OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 8 — Aug. 1, 2011
  • pp: 2096–2109

Optimizing probe design for an implantable perfusion and oxygenation sensor

Tony J. Akl, Ruiqi Long, Michael J. McShane, M. Nance Ericson, Mark A. Wilson, and Gerard L. Coté  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 8, pp. 2096-2109 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1720 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In an effort to develop an implantable optical perfusion and oxygenation sensor, based on multiwavelength reflectance pulse oximetry, we investigate the effect of source–detector separation and other source-detector characteristics to optimize the sensor’s signal to background ratio using Monte Carlo (MC) based simulations and in vitro phantom studies. Separations in the range 0.45 to 1.25 mm were found to be optimal in the case of a point source. The numerical aperture (NA) of the source had no effect on the collected signal while the widening of the source spatial profile caused a shift in the optimal source-detector separation. Specifically, for a 4.5 mm flat beam and a 2.4 mm × 2.5 mm photodetector, the optimal performance was found to be when the source and detector are adjacent to each other. These modeling results were confirmed by data collected from in vitro experiments on a liver phantom perfused with dye solutions mimicking the absorption properties of hemoglobin for different oxygenation states.

© 2011 OSA

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(290.1990) Scattering : Diffusion
(300.6340) Spectroscopy : Spectroscopy, infrared
(280.1415) Remote sensing and sensors : Biological sensing and sensors

ToC Category:
Optics of Tissue and Turbid Media

Original Manuscript: May 12, 2011
Revised Manuscript: June 27, 2011
Manuscript Accepted: June 28, 2011
Published: June 29, 2011

Tony J. Akl, Ruiqi Long, Michael J. McShane, M. Nance Ericson, Mark A. Wilson, and Gerard L. Coté, "Optimizing probe design for an implantable perfusion and oxygenation sensor," Biomed. Opt. Express 2, 2096-2109 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U.S. Organ Procurement and Transplantation Network and the Scientific Registry of Transplant Recipients, “2009 OPTN/SRTR Annual Report: Transplant Data 1999-2008,” U.S. Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, Division of Transplantation, Rockville, MD.
  2. A. Humeau, W. Steenbergen, H. Nilsson, and T. Strömberg, “Laser Doppler perfusion monitoring and imaging: novel approaches,” Med. Biol. Eng. Comput. 45(5), 421–435 (2007). [CrossRef] [PubMed]
  3. T. Kok, M. J. H. Slooff, C. J. P. Thijn, P. M. J. G. Peeters, R. Verwer, C. M. A. Bijleveld, A. P. van den Berg, E. B. Haagsma, and I. J. Klompmaker, “Routine Doppler ultrasound for the detection of clinically unsuspected vascular complications in the early postoperative phase after orthotopic liver transplantation,” Transpl. Int. 11(4), 272–276 (1998). [CrossRef] [PubMed]
  4. P. Vajkoczy, H. Roth, P. Horn, T. Lucke, C. Thomé, U. Hubner, G. T. Martin, C. Zappletal, E. Klar, L. Schilling, and P. Schmiedek, “Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe,” J. Neurosurg. 93(2), 265–274 (2000). [CrossRef] [PubMed]
  5. M. B. Khot, P. K. Maitz, B. R. Phillips, H. F. Bowman, J. J. Pribaz, and D. P. Orgill, “Thermal diffusion probe analysis of perfusion changes in vascular occlusions of rabbit pedicle flaps,” Plast. Reconstr. Surg. 115(4), 1103–1109 (2005). [CrossRef] [PubMed]
  6. H. F. Bowman and T. A. Balasubramaniam, “A new technique utilizing thermistor probes for the measurement of thermal properties of biomaterials,” Cryobiology 13(5), 572–580 (1976). [CrossRef] [PubMed]
  7. R. Ricciardi, B. K. Schaffer, R. D. Kim, S. A. Shah, S. E. Donohue, S. M. Wheeler, S. H. Quarfordt, M. P. Callery, W. C. Meyers, and R. S. Chari, “Protective effects of ischemic preconditioning on the cold-preserved liver are tyrosine kinase dependent,” Transplantation 72(3), 406–412 (2001). [CrossRef] [PubMed]
  8. E. Klar, T. Kraus, J. Bleyl, W. H. Newman, H. F. Bowman, W. J. Hofmann, R. Kummer, M. Bredt, and C. Herfarth, “Thermodiffusion for continuous quantification of hepatic microcirculation--validation and potential in liver transplantation,” Microvasc. Res. 58(2), 156–166 (1999). [CrossRef] [PubMed]
  9. J. G. Webster, Design of Pulse Oximeters, Medical Science Series (Institute of Physics Pub., Bristol; Philadelphia, 1997), p. xvi.
  10. T. Aoyagi, “Pulse oximetry: its invention, theory, and future,” J. Anesth. 17(4), 259–266 (2003). [CrossRef] [PubMed]
  11. S. Reichelt, J. Fiala, A. Werber, K. Förster, C. Heilmann, R. Klemm, and H. Zappe, “Development of an implantable pulse oximeter,” IEEE Trans. Biomed. Eng. 55(2), 581–588 (2008). [CrossRef] [PubMed]
  12. A. C. Guyton, Textbook of Medical Physiology, 8th ed. (Saunders, Philadelphia, 1991), p. xli.
  13. C. Tziafalia, M. Vlychou, K. Tepetes, N. Kelekis, and I. V. Fezoulidis, “Echo-Doppler measurements of portal vein and hepatic artery in asymptomatic patients with hepatitis B virus and healthy adults,” J. Gastrointestin. Liver Dis. 15(4), 343–346 (2006). [PubMed]
  14. M. N. Ericson, M. A. Wilson, G. L. Coté, J. S. Baba, W. Xu, M. Bobrek, C. L. Britton, M. S. Hileman, M. R. Moore, M. S. Emery, and R. Lenarduzzi, “Implantable sensor for blood flow monitoring after transplant surgery,” Minim. Invasive Ther. Allied Technol. 13(2), 87–94 (2004). [CrossRef] [PubMed]
  15. M. N. Ericson, M. Wilson, G. Cote, C. L. Britton, W. Xu, J. Baba, M. Bobrek, M. Hileman, M. Moore, and S. Frank, “Development of an implantable oximetry-based organ perfusion sensor,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 3, 2235–2238 (2004). [PubMed]
  16. H. Subramanian, B. L. Ibey, W. J. Xu, M. A. Wilson, M. N. Ericson, and G. L. Coté, “Real-time separation of perfusion and oxygenation signals for an implantable sensor using adaptive filtering,” IEEE Trans. Biomed. Eng. 52(12), 2016–2023 (2005). [CrossRef] [PubMed]
  17. J. L. Reuss and D. Siker, “The pulse in reflectance pulse oximetry: modeling and experimental studies,” J. Clin. Monit. Comput. 18(4), 289–299 (2004). [CrossRef] [PubMed]
  18. J. L. Reuss, “Multilayer modeling of reflectance pulse oximetry,” IEEE Trans. Biomed. Eng. 52(2), 153–159 (2005). [CrossRef] [PubMed]
  19. M. Hickey and P. A. Kyriacou, “Optimal spacing between transmitting and receiving optical fibres in reflectance pulse oximetry,” J. Phys. Conf. Ser. 85, 012030 (2007). [CrossRef]
  20. J. L. Reuss, “Arterial pulsatility and the modeling of reflectance pulse oximetry,” in Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,2003 (IEEE, 2003), pp. 2791–2794.
  21. T. J. Akl, T. J. King, R. Long, J. S. Baba, M. J. McShane, M. N. Ericson, M. A. Wilson, and G. L. Cote, ““Optimizing source detector separation for an implantable perfusion and oxygenation sensor,”,” Proc. SPIE 7906, 790605, 790605-5 (2011). [CrossRef]
  22. L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995). [CrossRef] [PubMed]
  23. J.-P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C.-T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med. 29(3), 205–212 (2001). [CrossRef] [PubMed]
  24. M. Friebel, J. Helfmann, U. Netz, and M. Meinke, “Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2,000 nm,” J. Biomed. Opt. 14(3), 034001 (2009). [CrossRef] [PubMed]
  25. S. Prahl, “Optical absorption of hemoglobin” ( www.omlc.org , 1999), retrieved January 20, 2011, http://omlc.ogi.edu/spectra/hemoglobin/ .
  26. D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 028102 (2004). [CrossRef] [PubMed]
  27. P. J. Wang, W. C. Li, G. M. Xi, H. Q. Wang, Z. H. Zhang, B. C. Yao, W. Tang, Z. H. Deng, and X. H. Zhang, “Biomechanical study of hepatic portal vein in humans and pigs and its value in liver transplantation,” Transplant. Proc. 41(5), 1906–1910 (2009). [CrossRef] [PubMed]
  28. A. P. Avolio, “Multi-branched model of the human arterial system,” Med. Biol. Eng. Comput. 18(6), 709–718 (1980). [CrossRef] [PubMed]
  29. L. Wang, S. L. Jacques, and L. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54(3), 141–150 (1997). [CrossRef] [PubMed]
  30. R. Long, T. King, T. Akl, M. N. Ericson, M. A. Wilson, G. L. Coté, and M. J. McShane, “Opto-fluidic phantom mimicking optical properties of porcine livers,” Biomed. Opt. Express 2(7), 1877–1892 (2011). [CrossRef]
  31. P. Di Ninni, F. Martelli, and G. Zaccanti, “The use of India ink in tissue-simulating phantoms,” Opt. Express 18(26), 26854–26865 (2010). [CrossRef] [PubMed]
  32. S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37(4), 985–993 (1992). [CrossRef] [PubMed]
  33. S. Takatani and M. D. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model,” IEEE Trans. Biomed. Eng. BME-26(12), 656–664 (1979). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited