OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 8 — Aug. 1, 2011
  • pp: 2117–2125

Fiber-optic system for monitoring fast photoactivation dynamics of optical highlighter fluorescent proteins

Zhiguo Pei, Lingsong Qin, Zhihong Zhang, Shaoqun Zeng, and Zhen-Li Huang  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 8, pp. 2117-2125 (2011)
http://dx.doi.org/10.1364/BOE.2.002117


View Full Text Article

Enhanced HTML    Acrobat PDF (1169 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Characterizing the photoactivation performance of optical highlighter fluorescent proteins is crucial to the realization of photoactivation localization microscopy. In contrast to those fluorescence-based approaches that require complex data processing and calibration procedures, here we report a simple and quantitative alternative, which relies on the measurement of small absorption spectra changes over time with a fiber-optic system. Using Dronpa as a representative highlighter protein, we have investigated the capacity of this system in monitoring the fast photoactivation process.

© 2011 OSA

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.1030) Spectroscopy : Absorption

ToC Category:
Optical Biophysics

History
Original Manuscript: May 9, 2011
Revised Manuscript: June 28, 2011
Manuscript Accepted: July 1, 2011
Published: July 1, 2011

Citation
Zhiguo Pei, Lingsong Qin, Zhihong Zhang, Shaoqun Zeng, and Zhen-Li Huang, "Fiber-optic system for monitoring fast photoactivation dynamics of optical highlighter fluorescent proteins," Biomed. Opt. Express 2, 2117-2125 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-8-2117


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007). [CrossRef] [PubMed]
  2. B. Huang, H. Babcock, and X. Zhuang, “Breaking the diffraction barrier: super-resolution imaging of cells,” Cell 143(7), 1047–1058 (2010). [CrossRef] [PubMed]
  3. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  4. H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods 5(5), 417–423 (2008). [CrossRef] [PubMed]
  5. P. Kanchanawong, G. Shtengel, A. M. Pasapera, E. B. Ramko, M. W. Davidson, H. F. Hess, and C. M. Waterman, “Nanoscale architecture of integrin-based cell adhesions,” Nature 468(7323), 580–584 (2010). [CrossRef] [PubMed]
  6. J. Liu, Z. G. Pei, L. Wang, Z. H. Zhang, S. Q. Zeng, and Z. L. Huang, “A straightforward and quantitative approach for characterizing the photoactivation performance of optical highlighter fluorescent proteins,” Appl. Phys. Lett. 97(20), 203701 (2010). [CrossRef]
  7. F. V. Subach, G. H. Patterson, S. Manley, J. M. Gillette, J. Lippincott-Schwartz, and V. V. Verkhusha, “Photoactivatable mCherry for high-resolution two-color fluorescence microscopy,” Nat. Methods 6(2), 153–159 (2009). [CrossRef] [PubMed]
  8. G. Patterson, M. Davidson, S. Manley, and J. Lippincott-Schwartz, “Superresolution imaging using single-molecule localization,” Annu. Rev. Phys. Chem. 61(1), 345–367 (2010). [CrossRef] [PubMed]
  9. R. Ando, H. Mizuno, and A. Miyawaki, “Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting,” Science 306(5700), 1370–1373 (2004). [CrossRef] [PubMed]
  10. S. Habuchi, R. Ando, P. Dedecker, W. Verheijen, H. Mizuno, A. Miyawaki, and J. Hofkens, “Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa,” Proc. Natl. Acad. Sci. U.S.A. 102(27), 9511–9516 (2005). [CrossRef] [PubMed]
  11. S. Habuchi, P. Dedecker, J.-i. Hotta, C. Flors, R. Ando, H. Mizuno, A. Miyawaki, and J. Hofkens, “Photo-induced protonation/deprotonation in the GFP-like fluorescent protein Dronpa: mechanism responsible for the reversible photoswitching,” Photochem. Photobiol. Sci. 5(6), 567–576 (2006). [CrossRef] [PubMed]
  12. C. Flors, J.-i. Hotta, H. Uji-i, P. Dedecker, R. Ando, H. Mizuno, A. Miyawaki, and J. Hofkens, “A stroboscopic approach for fast photoactivation-localization microscopy with Dronpa mutants,” J. Am. Chem. Soc. 129(45), 13970–13977 (2007). [CrossRef] [PubMed]
  13. E. Pastrana, “Fast 3D super-resolution fluorescence microscopy,” Nat. Methods 8(1), 46 (2011). [CrossRef]
  14. N. Irwin and K. A. Janssen, Molecular Cloning: a Laboratory Manual, 3ed., J. Argentine and N. Irwin, eds. (Cold Spring Harbor Laboratory Press, New York 2001).
  15. “CCD noise sources and signal-to-noise ratio,” http://learn.hamamatsu.com/articles/ccdsnr.html , accessed Mar. 2011.
  16. “HL-2000 tungsten halogen light sources,” http://www.oceanoptics.com/Products/hl2000.asp , accessed Mar. 2011.
  17. “USB2000+ Miniature Fiber Optic Spectrometer,” http://www.oceanoptics.com/Products/usb2000+.asp , accessed Mar. 2011.
  18. S. W. Smith, The Scientist and Engineer's Guide to Digital Signal Processing, 2nd ed. (California Technical Publishing, 2003).
  19. M. Andresen, A. C. Stiel, S. Trowitzsch, G. Weber, C. Eggeling, M. C. Wahl, S. W. Hell, and S. Jakobs, “Structural basis for reversible photoswitching in Dronpa,” Proc. Natl. Acad. Sci. U.S.A. 104(32), 13005–13009 (2007). [CrossRef] [PubMed]
  20. Ocean Optics catalog (Ocean Optics, Inc., 2011).
  21. A. R. Faro, V. Adam, P. Carpentier, C. Darnault, D. Bourgeois, and E. de Rosny, “Low-temperature switching by photoinduced protonation in photochromic fluorescent proteins,” Photochem. Photobiol. Sci. 9(2), 254–262 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited