OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 8 — Aug. 1, 2011
  • pp: 2126–2143

Hypochromicity in red blood cells: an experimental and theoretical investigation

Akihisa Nonoyama, Alicia Garcia-Lopez, Luis H. Garcia-Rubio, German F. Leparc, and Robert L. Potter  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 8, pp. 2126-2143 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (3040 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multiwavelength UV-visible transmission spectrophotometry is a useful tool for the examination of micron-size particle suspensions in the context of particle size and chemical composition. This paper reports the reliability of this method to characterize the spectra of purified red blood cells both in their physiological state and with modified hemoglobin content. Previous studies have suggested the contribution of hypochromism on the particle spectra caused by the close electronic interaction of the encapsulated chromophores. Our research shows, however, that this perceived hypochromism can be accounted for by considering two important issues: the acceptance angle of the instrument and the combined scattering and absorption effect of light on the particles. In order to establish these ideas, spectral analysis was performed on purified and modified red cells where the latter was accomplished with a modified hypotonic shock protocol that altered the hemoglobin concentration within the cells. Moreover, the Mie theory was used to successfully simulate the spectral features and trends of the red cells. With this combination of experimental and theoretical exploration, definition of hypochromism has been extended to two subcategories.

© 2011 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring

ToC Category:
Cell Studies

Original Manuscript: May 26, 2011
Revised Manuscript: June 30, 2011
Manuscript Accepted: June 30, 2011
Published: July 1, 2011

Akihisa Nonoyama, Alicia Garcia-Lopez, Luis H. Garcia-Rubio, German F. Leparc, and Robert L. Potter, "Hypochromicity in red blood cells: an experimental and theoretical investigation," Biomed. Opt. Express 2, 2126-2143 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. A. Seiber and P. Latimer, “Extinction efficiencies of large latex spheres,” J. Colloid Interface Sci. 23(4), 509–512 (1967). [CrossRef]
  2. G. Crawley, M. Cournil, and D. Di Benedetto, “Size analysis of fine particle suspensions by spectral turbidimetry: potential and limits,” Powder Technol. 91(3), 197–208 (1997). [CrossRef]
  3. A. N. Shvalov, J. T. Soini, A. V. Chernyshev, P. A. Tarasov, E. Soini, and V. P. Maltsev, “Light-scattering properties of individual erythrocytes,” Appl. Opt. 38(1), 230–235 (1999). [CrossRef] [PubMed]
  4. S. Narayanan, S. Orton, G. F. Leparc, L. H. Garcia-Rubio, and R. L. Potter, “Ultraviolet and visible light spectrophotometric approach to blood typing: objective analysis by agglutination index,” Transfusion 39(10), 1051–1059 (1999). [CrossRef] [PubMed]
  5. Y. Mattley, G. Leparc, R. Potter, and L. García-Rubio, “Light scattering and absorption model for the quantitative interpretation of human blood platelet spectral data,” Photochem. Photobiol. 71(5), 610–619 (2000). [CrossRef] [PubMed]
  6. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, NY, 1983).
  7. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, NY, 1981)
  8. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, NY, 1969)
  9. L. H. Garcia-Rubio and N. Ro, “Detailed copolymer characterization using ultraviolet spectroscopy,” Can. J. Chem. 63(1), 253–263 (1985). [CrossRef]
  10. V. A. Bloomfield, “Static and dynamic light scattering from aggregating particles,” Biopolymers 54(3), 168–172 (2000). [CrossRef] [PubMed]
  11. M. Kunitani, S. Wolfe, S. Rana, C. Apicella, V. Levi, and G. Dollinger, “Classical light scattering quantitation of protein aggregates: off-line spectroscopy versus HPLC detection,” J. Pharm. Biomed. Anal. 16(4), 573–586 (1997). [CrossRef] [PubMed]
  12. L. H. Garcia-Rubio, “Characterization of proteins during aggregation using turbidimetry,” Chem. Eng. Commun. 80(1), 193–210 (1989). [CrossRef]
  13. A. A. Kokhanovskii, “Absorption and scattering of light by large layered ellipsoidal particles,” Opt. Spektrosk. 71(2), 351–354 (1991).
  14. C. E. Alupoaei, J. A. Olivares, and L. H. García-Rubio, “Quantitative spectroscopy analysis of prokaryotic cells: vegetative cells and spores,” Biosens. Bioelectron. 19(8), 893–903 (2004). [CrossRef] [PubMed]
  15. A. L. Koch and E. Ehrenfeld, “Th size and shape of bacteria by light scattering measurements,” Biochim. Biophys. Acta 165(2), 262–273 (1968). [PubMed]
  16. E. Beutler, M. A. Lichtman, B. S. Coller, and T. J. Kipps, Williams Hematology. Fifth Ed. (McGraw-Hill, Inc., New York, NY 1995).
  17. M. Hammer, D. Schweitzer, B. Michel, E. Thamm, and A. Kolb, “Single scattering by red blood cells,” Appl. Opt. 37(31), 7410–7418 (1998). [CrossRef] [PubMed]
  18. A. N. Yaroslavsky, A. V. Priezzhev, J. Rodriguez, I. V. Yaroslavsky, and H. Battarbee, Handbook of Optical Biomedical Diagnostics, Ch 2, Edited by Tuchin, V. V. (SPIE Press, Bellingham, WA 2002).
  19. V. I. Danilov and S. N. Volkov, “Quantum-mechanical study of the hypochromic effect in polynucleotides. Intra- and interstrand interaction contributions,” Biopolymers 14(6), 1205–1212 (1975). [CrossRef] [PubMed]
  20. M. Weissbluth, “Hypochromism,” Q. Rev. Biophys. 4(01), 1–34 (1971). [CrossRef] [PubMed]
  21. L. N. M. Duyens, “The flattening of the absorption spectrum of suspensions, as compared to that of solutions,” Biochim. Biophys. Acta 19(1), 1–12 (1956). [CrossRef] [PubMed]
  22. P. Latimer, “The deconvulation of absorption spectra of green plant material-improved corrections for the sieve effect,” Photochem. Photobiol. 38(6), 731–734 (1983). [CrossRef]
  23. I. Tinoco., “Hypochromism in polynucleotides,” J. Am. Chem. Soc. 82(18), 4785–4790 (1960). [CrossRef]
  24. R. A. Macrae, J. A. McCLURE, and P. Latimer, “Spectral transmission and scattering properties of red blood cells,” J. Opt. Soc. Am. 51(12), 1366–1372 (1961). [CrossRef] [PubMed]
  25. N. L. Vekshin, “Screening hypochromism in molecular aggregates and biopolymers,” J. Biol. Phys. 25(4), 339–354 (1999). [CrossRef]
  26. T. A. Hoffmann and J. Ladik, “Some remarks on the hypochromicity of polynucleotides,” J. Theor. Biol. 6(1), 26–32 (1964). [CrossRef] [PubMed]
  27. N. L. Vekshin, “Screening hypochromism of biological macromolecules and suspensions,” J. Photochem. Photobiol. B 3(4), 625–630 (1989). [CrossRef]
  28. N. L. Vekshin, “Screening hypochromism of chromophores in macromolecular biostructures,” Biofizika 44(1), 45–55 (1999).
  29. H. DeVoe and I. Tinoco., “The hypochromism of helical polynucleotides,” J. Mol. Biol. 4(6), 518–527 (1962). [CrossRef] [PubMed]
  30. D. Voet and J. G. Voet, Biochemistry, 3rd ed. (Wiley, Hoboken, NJ 2004), Vol. 1.
  31. J. Bateman, S. S. Hsu, J. P. Knudsen, and K. L. Yudowitch, “Hemoglobin spacing in erythrocytes,” Arch. Biochem. Biophys. 45(2), 411–422 (1953). [CrossRef] [PubMed]
  32. J. M. Steinke and A. P. Shepherd, “Comparison of Mie theory and the light scattering of red blood cells,” Appl. Opt. 27(19), 4027–4033 (1988). [CrossRef] [PubMed]
  33. D. H. Tycko, M. H. Metz, E. A. Epstein, and A. Grinbaum, “Flow-cytometric light scattering measurement of red blood cell volume and hemoglobin concentration,” Appl. Opt. 24(9), 1355–1365 (1985). [CrossRef] [PubMed]
  34. A. G. Borovoi, E. I. Naats, and U. G. Oppen, “Scattering of light by a red blood cell,” J. Biomed. Opt. 3(3), 364–372 (1998). [CrossRef]
  35. P. Latimer, “The influence of photometer design on optical-conformational changes,” J. Theor. Biol. 51(1), 1–12 (1975). [CrossRef] [PubMed]
  36. R. F. Baker, “Entry of ferritin into human red cells during hypotonic haemolysis,” Nature 215(5099), 424–425 (1967). [CrossRef] [PubMed]
  37. G. M. Ihler, R. H. Glew, and F. W. Schnure, “Enzyme loading of erythrocytes,” Proc. Natl. Acad. Sci. U.S.A. 70(9), 2663–2666 (1973). [CrossRef] [PubMed]
  38. N. V. B. Marsden and S. G. Ostling, “Accumulation of dextran in human red cells after haemolysis,” Nature 184(4687), 723–724 (1959). [CrossRef] [PubMed]
  39. G. P. Sartiano and R. L. Hayes, “Hypotonic exchange-loading of erythrocytes. II. introduction of hemoglobins S and C into normal red cells,” J. Lab. Clin. Med. 89(1), 30–40 (1977). [PubMed]
  40. H. Bodemann and H. Passow, “Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis,” J. Membr. Biol. 8(1), 1–26 (1972). [CrossRef] [PubMed]
  41. J. F. Hoffman, “Physiological characteristics of human red blood cell ghosts,” J. Gen. Physiol. 42(1), 9–28 (1958). [CrossRef] [PubMed]
  42. UV Atlas of Organic Compounds, (Plenum, New York, NY., 1966), Vol. II.
  43. I. Thormählen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14(4), 933–945 (1985). [CrossRef]
  44. S. B. McKenzie, Textbook of hematology, (Williams and Wilkins, Baltimore, MD, 1996)
  45. A. L. Koch, “Some calculations on the turbidity of mitochondria and bacteria,” Biochim. Biophys. Acta 51(3), 429–441 (1961). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited