OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 8 — Aug. 1, 2011
  • pp: 2144–2159

Spatially resolved Brillouin spectroscopy to determine the rheological properties of the eye lens

Stephan Reiß, Gerolf Burau, Oliver Stachs, Rudolf Guthoff, and Heinrich Stolz  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 8, pp. 2144-2159 (2011)
http://dx.doi.org/10.1364/BOE.2.002144


View Full Text Article

Enhanced HTML    Acrobat PDF (1995 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Presbyopia is closely associated with the loss of accommodation, and hence with a decline in the viscoelastic properties of the human eye lens. In this article we describe a method for obtaining spatially resolved in vivo measurements of the rheological properties of the eye lens, based on the spectroscopic analysis of spontaneous Brillouin scattering using a virtually imaged phased array (VIPA). The multi-pass configuration enhances resolution to the extent that measurements are possible in elastic biological tissue characterized by intense scattering. We also present spatially resolved measurements obtained in extracted animal eyes and lenses. The results yield entirely new insights into the aging process of the eye lens.

© 2011 OSA

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.4470) Medical optics and biotechnology : Ophthalmology
(290.5830) Scattering : Scattering, Brillouin
(330.7327) Vision, color, and visual optics : Visual optics, ophthalmic instrumentation

ToC Category:
Ophthalmology Applications

History
Original Manuscript: May 2, 2011
Revised Manuscript: June 29, 2011
Manuscript Accepted: July 2, 2011
Published: July 5, 2011

Citation
Stephan Reiß, Gerolf Burau, Oliver Stachs, Rudolf Guthoff, and Heinrich Stolz, "Spatially resolved Brillouin spectroscopy to determine the rheological properties of the eye lens," Biomed. Opt. Express 2, 2144-2159 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-8-2144


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. von Helmholtz, “Ueber die Accommodation des Auges,” Arch. Ophthalmol. 1, 1–74 (1855).
  2. H. A. Weeber, G. Eckert, W. Pechhold, and R. G. L. van der Heijde, “Stiffness gradient in the crystalline lens,” Graefes Arch. Clin. Exp. Ophthalmol. 245(9), 1357–1366 (2007). [CrossRef] [PubMed]
  3. R. F. Fisher, “The elastic constants of the human lens,” J. Physiol. 212(1), 147–180 (1971). [PubMed]
  4. R. F. Fisher, “The force of contraction of the human ciliary muscle during accommodation,” J. Physiol. 270(1), 51–74 (1977). [PubMed]
  5. R. F. Fisher, “Elastic constants of the human lens capsule,” J. Physiol. 201(1), 1–19 (1969). [PubMed]
  6. S. Krag and T. T. Andreassen, “Mechanical properties of the human posterior lens capsule,” Invest. Ophthalmol. Vis. Sci. 44(2), 691–696 (2003). [CrossRef] [PubMed]
  7. R. A. Schachar, R. W. Chan, and M. Fu, “Viscoelastic shear properties of the fresh porcine lens,” Br. J. Ophthalmol. 91(3), 366–368 (2007). [CrossRef] [PubMed]
  8. S. T. Bailey, M. D. Twa, J. C. Gump, M. Venkiteshwar, M. A. Bullimore, and R. Sooryakumar, “Light-scattering study of the normal human eye lens: elastic properties and age dependence,” IEEE Trans. Biomed. Eng. 57(12), 2910–2917 (2010). [CrossRef] [PubMed]
  9. J. Randall and J. M. Vaughan, “The measurement and interpretation of Brillouin scattering in the lens of the eye,” Proc. R. Soc. Lond. B Biol. Sci. 214(1197), 449–470 (1982). [CrossRef] [PubMed]
  10. G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008). [CrossRef] [PubMed]
  11. K. Wileke, “Morphologische und physiologische Untersuchungen an transparenten und kataraktösen Linsen von Farm und Wildlachsen,” Dissertation (Freie Universität Berlin, 2008).
  12. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001). [CrossRef] [PubMed]
  13. Robert-Bosch-Stiftung Regierungspräsidium Karlsruhe, “Einführung in die Rheologie von Emulsionen,” www.nat.nwt-bw.de/./RBS_Grundlagen_Rheologie.pdf .
  14. A. S. Dukhin and P. J. Goetz, “Bulk viscosity and compressibility measurement using acoustic spectroscopy,” J. Chem. Phys. 130(12), 124519 (2009). [CrossRef] [PubMed]
  15. J. M. Vaughan and J. T. Randall, “Brillouin scattering, density and elastic properties of the lens and cornea of the eye,” Nature 284(5755), 489–491 (1980). [CrossRef] [PubMed]
  16. N. Berovic, N. Thomas, R. A. Thornhill, and J. M. Vaughan, “Observation of Brillouin scattering from single muscle fibres,” Eur. Biophys. J. 17(2), 69–74 (1989). [CrossRef] [PubMed]
  17. J. Randall, J. M. Vaughan, and S. Cusak, “Brillouin scattering in systems of biological significance,” Philos. Trans. R. Soc. Lond. A 293(1402), 341–348 (1979). [CrossRef]
  18. L. Brillouin, “Diffusion de la lumière et des rayonnes X par un corps transparent homogène: influence de l’agitation thermique,” Ann. Phys. (Paris) 17, 88–122 (1922).
  19. M. Shirasaki, “Virtually imaged phased array,” Fujitsu Sci. Tech. J. 35, 113–125 (1999).
  20. G. Scarcelli and S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19(11), 10913–10922 (2011). [CrossRef] [PubMed]
  21. M. Shirasaki, “Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,” Opt. Lett. 21(5), 366–368 (1996). [CrossRef] [PubMed]
  22. T. Mezger, Das Rheologie-Handbuch (Vincentz Verlag, Hannover, 2000).
  23. E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. Kuijer, R. G. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci. 50(1), 281–289 (2009). [CrossRef] [PubMed]
  24. R. A. Schachar, A. Abolmaali, and F. Kamangar, “Comment on the publication “Three-dimensional ultrasound, biomicroscopy environmental and conventional scanning electron microscopy investigations of the human zonula ciliaris for numerical modelling of accommodation” by O. Stachs et al,” Graefes Arch. Clin. Exp. Ophthalmol. 244(8), 1062–1063, author reply 1064–1065 (2006). [CrossRef] [PubMed]
  25. R. A. Schachar, A. Abolmaali, and T. Le, “Insights into the age-related decline in the amplitude of accommodation of the human lens using a non-linear finite-element model,” Br. J. Ophthalmol. 90(10), 1304–1309 (2006). [CrossRef] [PubMed]
  26. A. P. Beers and G. L. Van der Heijde, “Presbyopia and velocity of sound in the lens,” Optom. Vis. Sci. 71(4), 250–253 (1994). [CrossRef] [PubMed]
  27. R. F. Fisher and B. E. Pettet, “Presbyopia and the water content of the human crystalline lens,” J. Physiol. 234(2), 443–447 (1973). [PubMed]
  28. H. Stroppe, Physik, 14th ed. (Carl Hanser Verlag, Leipzig, 2008).
  29. T. A. Litovitz and C. M. Davis, “Structural and Shear Relaxation in Liquids,” in Physical Acoustics: Principles and Methods, W. P. Mason (ed.), Part IIA (Academic Press, New York, 1965), pp. 281–349.
  30. E. Risse, “Kontinuierlich angeregt und aktiv gütegeschaltete Oszillator-Verstärker-Systeme hoher Strahldichte durch Einsatz von Faser-Phasenkonjugatoren,” Dissertation (Technical University of Berlin, Berlin, 2003).
  31. R. Urs, “Investigation of accommodation and presbyopia using ultrasound imaging during ex vivo simulated accommodation,” Ph.D. dissertaion (University of Miami, 2010), Open Access Dissertations, http://scholarlyrepository.miami.edu/oa_dissertations/360 .
  32. T. D. Wang, M. J. Mandella, C. H. Contag, and G. S. Kino, “Dual-axis confocal microscope for high-resolution in vivo imaging,” Opt. Lett. 28(6), 414–416 (2003). [CrossRef] [PubMed]
  33. M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10, 128–138 (1988).
  34. H. Melcher and E. Gerth, ““Darstellung von Linienprofilen durch Lorentz-Funktionen n-ten Grades,” Exp,” Tech. Phys. 25(6), 527–538 (1977).
  35. A. Hughes, “A schematic eye for the rabbit,” Vision Res. 12(1), 123–138 (1972). [CrossRef] [PubMed]
  36. S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008). [CrossRef] [PubMed]
  37. B. K. Pierscionek, A. Belaidi, and H. H. Bruun, “Refractive index distribution in the porcine eye lens for 532 nm and 633 nm light,” Eye (Lond.) 19(4), 375–381 (2005). [CrossRef] [PubMed]
  38. A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010). [CrossRef] [PubMed]
  39. A. K. Dillingham, H. Deuring, G. J. Hilborn, L. Garamszegi, and H. Haitjema, DE Patent No. DE 000060113085 T2 (June 2006).
  40. R. Barer and S. Joseph, “Refractometry of living cells,” Q. J. Microsc. Sci. 95(4), 399–423 (1954).
  41. D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J.-M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express 1(5), 1331–1340 (2010). [CrossRef] [PubMed]
  42. D. A. Samuelson, “Embryology and anatomy,” in Veterinary Ophthalmology, 2nd ed., K. N. Gelatt, ed. (Lea & Febiger, Philadelphia, 1991), pp. 75–84.
  43. G. G. Gum, “Physiology of the eye,” in Veterinary Ophthalmology, 2nd ed., K. N. Gelatt, ed. (Lea und Febiger, Philadelphia, 1991), pp. 138–143.
  44. K. Ulrich, Linsenproteine (Kristalline),” in Vergleichende Biochemie der Tiere (Fischer, Jena, 1990), pp. 322–332.
  45. C. L. De Korte, A. F. W. Van Der Steen, J. M. Thijssen, J. J. Duindam, C. Otto, and G. J. Puppels, “Relation between local acoustic parameters and protein distribution in human and porcine eye lenses,” Exp. Eye Res. 59(5), 617–627 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited