OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 8 — Aug. 1, 2011
  • pp: 2189–2201

Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope

David Merino, Jacque L. Duncan, Pavan Tiruveedhula, and Austin Roorda  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 8, pp. 2189-2201 (2011)
http://dx.doi.org/10.1364/BOE.2.002189


View Full Text Article

Enhanced HTML    Acrobat PDF (1273 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the capability of a new generation adaptive optics scanning laser ophthalmoscope (AOSLO) to resolve cones and rods in normal subjects, and confirm our findings by comparing cone and rod spacing with published histology measurements. Cone and rod spacing measurements are also performed on AOSLO images from two different diseased eyes, one affected by achromatopsia and the other by acute zonal occult outer retinopathy (AZOOR). The potential of AOSLO technology in the study of these and other retinal diseases is illustrated.

© 2011 OSA

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(170.0110) Medical optics and biotechnology : Imaging systems
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4470) Medical optics and biotechnology : Ophthalmology

ToC Category:
Ophthalmology Applications

History
Original Manuscript: May 27, 2011
Revised Manuscript: June 24, 2011
Manuscript Accepted: July 2, 2011
Published: July 8, 2011

Citation
David Merino, Jacque L. Duncan, Pavan Tiruveedhula, and Austin Roorda, "Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope," Biomed. Opt. Express 2, 2189-2201 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-8-2189


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997). [CrossRef] [PubMed]
  2. D. T. Miller, D. R. Williams, G. M. Morris, and J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36(8), 1067–1079 (1996). [CrossRef] [PubMed]
  3. A. Roorda, F. Romero-Borja, W. Donnelly III, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002). [PubMed]
  4. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004). [CrossRef] [PubMed]
  5. Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13(12), 4792–4811 (2005). [CrossRef] [PubMed]
  6. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005). [CrossRef] [PubMed]
  7. D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, “Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy,” Opt. Express 14(8), 3345–3353 (2006). [CrossRef] [PubMed]
  8. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999). [CrossRef] [PubMed]
  9. K. Y. Li, P. Tiruveedhula, and A. Roorda, “Intersubject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci. 51(12), 6858–6867 (2010). [CrossRef] [PubMed]
  10. R. S. Jonnal, J. R. Besecker, J. C. Derby, O. P. Kocaoglu, B. Cense, W. Gao, Q. Wang, and D. T. Miller, “Imaging outer segment renewal in living human cone photoreceptors,” Opt. Express 18(5), 5257–5270 (2010). [CrossRef] [PubMed]
  11. T. Y. Chui, H. Song, and S. A. Burns, “Adaptive-optics imaging of human cone photoreceptor distribution,” J. Opt. Soc. Am. A 25(12), 3021–3029 (2008). [CrossRef] [PubMed]
  12. C. Torti, B. Považay, B. Hofer, A. Unterhuber, J. Carroll, P. K. Ahnelt, and W. Drexler, “Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina,” Opt. Express 17(22), 19382–19400 (2009). [CrossRef] [PubMed]
  13. J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology 113(6), 1014–1019.e1 (2006). [CrossRef] [PubMed]
  14. S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Vis. Sci. 47(5), 2080–2092 (2006). [CrossRef] [PubMed]
  15. Y. Kitaguchi, T. Fujikado, K. Bessho, H. Sakaguchi, F. Gomi, T. Yamaguchi, N. Nakazawa, T. Mihashi, and Y. Tano, “Adaptive optics fundus camera to examine localized changes in the photoreceptor layer of the fovea,” Ophthalmology 115(10), 1771–1777 (2008). [CrossRef] [PubMed]
  16. J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. H. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Vis. Sci. 48(7), 3283–3291 (2007). [CrossRef] [PubMed]
  17. S. S. Choi, R. J. Zawadzki, J. L. Keltner, and J. S. Werner, “Changes in cellular structures revealed by ultra-high resolution retinal imaging in optic neuropathies,” Invest. Ophthalmol. Vis. Sci. 49(5), 2103–2119 (2008). [CrossRef] [PubMed]
  18. M. K. Yoon, A. Roorda, Y. Zhang, C. Nakanishi, L.-J. C. Wong, Q. Zhang, L. Gillum, A. Green, and J. L. Duncan, “Adaptive optics scanning laser ophthalmoscopy images in a family with the mitochondrial DNA T8993C mutation,” Invest. Ophthalmol. Vis. Sci. 50(4), 1838–1847 (2009). [CrossRef] [PubMed]
  19. J. L. Duncan, K. E. Talcott, K. Ratnam, S. M. Sundquist, A. S. Lucero, S. Day, Y. Zhang, and A. Roorda, “Cone structure in retinal degeneration associated with mutations in the peripherin/RDS gene,” Invest. Ophthalmol. Vis. Sci. 52(3), 1557–1566 (2011). [CrossRef] [PubMed]
  20. P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci. 87(12), 930–941 (2010). [CrossRef] [PubMed]
  21. J. Rha, A. M. Dubis, M. Wagner-Schuman, D. M. Tait, P. Godara, B. Schroeder, K. Stepien, and J. Carroll, “Spectral domain optical coherence tomography and adaptive optics: imaging photoreceptor layer morphology to interpret preclinical phenotypes,” Adv. Exp. Med. Biol. 664, 309–316 (2010). [CrossRef] [PubMed]
  22. S. S. Choi, R. J. Zawadzki, M. C. Lim, J. D. Brandt, J. L. Keltner, N. Doble, and J. S. Werner, “Evidence of outer retinal changes in glaucoma patients as revealed by ultrahigh-resolution in vivo retinal imaging,” Br. J. Ophthalmol. 95(1), 131–141 (2011). [CrossRef] [PubMed]
  23. S. Ooto, M. Hangai, A. Sakamoto, A. Tsujikawa, K. Yamashiro, Y. Ojima, Y. Yamada, H. Mukai, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution imaging of resolved central serous chorioretinopathy using adaptive optics scanning laser ophthalmoscopy,” Ophthalmology 117(9), 1800–1809.e2 (2010). [CrossRef] [PubMed]
  24. K. E. Talcott, K. Ratnam, S. M. Sundquist, A. S. Lucero, B. J. Lujan, W. Tao, T. C. Porco, A. Roorda, and J. L. Duncan, “Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment,” Invest. Ophthalmol. Vis. Sci. 52(5), 2219–2226 (2011). [CrossRef] [PubMed]
  25. J. C. Christou, A. Roorda, and D. R. Williams, “Deconvolution of adaptive optics retinal images,” J. Opt. Soc. Am. A 21(8), 1393–1401 (2004). [CrossRef] [PubMed]
  26. K. Y. Li, S. Mishra, P. Tiruveedhula, and A. Roorda, “Comparison of control algorithms for a MEMS-based adaptive optics scanning laser ophthalmoscope,” in American Control Conference, 2009. ACC '09 (IEEE, 2009), pp. 3848–3853.
  27. D. C. Chen, S. M. Jones, D. A. Silva, and S. S. Olivier, “High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors,” J. Opt. Soc. Am. A 24(5), 1305–1312 (2007). [CrossRef] [PubMed]
  28. Y. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31(9), 1268–1270 (2006). [CrossRef] [PubMed]
  29. A. Gómez-Vieyra, A. Dubra, D. Malacara-Hernández, and D. R. Williams, “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” Opt. Express 17(21), 18906–18919 (2009). [CrossRef] [PubMed]
  30. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24(5), 1313–1326 (2007). [CrossRef] [PubMed]
  31. A. Dubra and Y. Sulai, “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2(6), 1757–1768 (2011). [CrossRef] [PubMed]
  32. A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Non-invasive in vivo imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2(7), 1864–1876 (2011). [CrossRef]
  33. A. Dubra, “Monochrome AVI desinusoid software,” http://www.cvs.rochester.edu/dubralab/image_processing/index.htm .
  34. S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE 5688A, 145–151 (2005). [CrossRef]
  35. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990). [CrossRef] [PubMed]
  36. R. W. Rodieck, “The density recovery profile: a method for analysis of points in the plane applicable to retinal studies,” Vis. Neurosci. 20(3), 349 (2003). [CrossRef] [PubMed]
  37. A. G. Bennett, A. R. Rudnicka, and D. F. Edgar, “Improvements on Littmann’s method of determining the size of retinal features by fundus photography,” Graefes Arch. Clin. Exp. Ophthalmol. 232(6), 361–367 (1994). [CrossRef] [PubMed]
  38. E. A. Rossi, P. Weiser, J. Tarrant, and A. Roorda, “Visual performance in emmetropia and low myopia after correction of high-order aberrations,” J. Vis. 7(8), 14 (2007). [CrossRef] [PubMed]
  39. T. Y. P. Chui, H. Song, and S. A. Burns, “Individual variations in human cone photoreceptor packing density: variations with refractive error,” Invest. Ophthalmol. Vis. Sci. 49(10), 4679–4687 (2008). [CrossRef] [PubMed]
  40. J. M. Enoch, “Wave-guide modes in retinal receptors,” Science 133(3461), 1353–1354 (1961). [CrossRef] [PubMed]
  41. C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors: variation with eccentricity and evidence for local anisotropy,” Vis. Neurosci. 9(2), 169–180 (1992). [CrossRef] [PubMed]
  42. N. Doble, S. S. Choi, J. L. Codona, J. Christou, J. M. Enoch, and D. R. Williams, “In vivo imaging of the human rod photoreceptor mosaic,” Opt. Lett. 36(1), 31–33 (2011). [CrossRef] [PubMed]
  43. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National Center for Biotechnology Information, National Library of Medicine (Bethesda, MD), “Online Mendelian inheritance in man, OMIM (TM),” http://www.ncbi.nlm.nih.gov/omim/ .
  44. D. Farnsworth, “The Farnsworth dichotomous test for color blindness-Panel D-15,” Psychological Corporation (1947).
  45. B. Török, “WEB-based scoring software for the Farnsworth-Munsell 100-Hue, Roth 28-Hue, Farnsworth D-15, and the Lanthony D-15 desaturated color tests,” http://www.torok.info/colorvision .
  46. K. J. Bowman, “A method for quantitative scoring of the Farnsworth Panel D-15,” Acta Ophthalmol. (Copenh.) 60(6), 907–916 (1982). [CrossRef] [PubMed]
  47. J. Carroll, S. S. Choi, and D. R. Williams, “In vivo imaging of the photoreceptor mosaic of a rod monochromat,” Vision Res. 48(26), 2564–2568 (2008). [CrossRef] [PubMed]
  48. H. F. Falls, J. R. Wolter, and M. Alpern, “Typical total monochromacy. A histological and psychophysical study,” Arch. Ophthalmol. 74(5), 610–616 (1965). [PubMed]
  49. R. Harrison, D. Hoefnagel, and J. N. Hayward, “Congenital total color blindness: a clincopathological report,” Arch. Ophthalmol. 64, 685–692 (1960). [PubMed]
  50. M. Glickstein and G. G. Heath, “Receptors in the monochromat eye,” Vision Res. 15(6), 633–636 (1975). [CrossRef] [PubMed]
  51. J. D. M. Gass, “Acute zonal occult outer retinopathy. Donders Lecture: The Netherlands Ophthalmological Society, Maastricht, Holland, June 19, 1992,” J. Clin. Neuroophthalmol. 13(2), 79–97 (1993). [PubMed]
  52. D. M. Monson and J. R. Smith, “Acute zonal occult outer retinopathy,” Surv. Ophthalmol. 56(1), 23–35 (2011). [CrossRef] [PubMed]
  53. D. Li and S. Kishi, “Loss of photoreceptor outer segment in acute zonal occult outer retinopathy,” Arch. Ophthalmol. 125(9), 1194–1200 (2007). [CrossRef] [PubMed]
  54. N. Zibrandtsen, I. C. Munch, K. Klemp, T. M. Jørgensen, B. Sander, and M. Larsen, “Photoreceptor atrophy in acute zonal occult outer retinopathy,” Acta Ophthalmol. (Copenh.) 86(8), 913–916 (2008). [CrossRef] [PubMed]
  55. H. F. Fine, R. F. Spaide, E. H. Ryan, Y. Matsumoto, and L. A. Yannuzzi, “Acute zonal occult outer retinopathy in patients with multiple evanescent white dot syndrome,” Arch. Ophthalmol. 127(1), 66–70 (2009). [CrossRef] [PubMed]
  56. M. Mkrtchyan, B. J. Lujan, D. Merino, C. E. Thirkill, A. Roorda, and J. Duncan, “Outer retinal structure in patients with acute zonal occult outer retinopathy,” submitted toAm. J. Ophthalmol. .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited