OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 8 — Aug. 1, 2011
  • pp: 2231–2242

Optimization of pupil design for point-scanning and line-scanning confocal microscopy

Yogesh G. Patel, Milind Rajadhyaksha, and Charles A. DiMarzio  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 8, pp. 2231-2242 (2011)
http://dx.doi.org/10.1364/BOE.2.002231


View Full Text Article

Enhanced HTML    Acrobat PDF (1658 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Both point-scanning and line-scanning confocal microscopes provide resolution and optical sectioning to observe nuclear and cellular detail in human tissues, and are being translated for clinical applications. While traditional point-scanning is truly confocal and offers the best possible optical sectioning and resolution, line-scanning is partially confocal but may offer a relatively simpler and lower-cost alternative for more widespread dissemination into clinical settings. The loss of sectioning and loss of contrast due to scattering in tissue is more rapid and more severe with a line-scan than with a point-scan. However, the sectioning and contrast may be recovered with the use of a divided-pupil. Thus, as part of our efforts to translate confocal microscopy for detection of skin cancer, and to determine the best possible approach for clinical applications, we are now developing a quantitative understanding of imaging performance for a set of scanning and pupil conditions. We report a Fourier-analysis-based computational model of confocal microscopy for six configurations. The six configurations are point-scanning and line-scanning, with full-pupil, half-pupil and divided-pupils. The performance, in terms of on-axis irradiance (signal), resolution and sectioning capabilities, is quantified and compared among these six configurations.

© 2011 OSA

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(170.1790) Medical optics and biotechnology : Confocal microscopy
(180.1790) Microscopy : Confocal microscopy
(180.5810) Microscopy : Scanning microscopy

ToC Category:
Microscopy

History
Original Manuscript: May 2, 2011
Revised Manuscript: July 6, 2011
Manuscript Accepted: July 7, 2011
Published: July 8, 2011

Citation
Yogesh G. Patel, Milind Rajadhyaksha, and Charles A. DiMarzio, "Optimization of pupil design for point-scanning and line-scanning confocal microscopy," Biomed. Opt. Express 2, 2231-2242 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-8-2231


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. G. Gonzalez, M. Gill, and A. C. Halpern, eds., Reflectance Confocal Microscopy of Cutaneous Tumors—An Atlas with Clinical, Dermoscopic and Histological Correlations (Informa Healthcare, London, 2008).
  2. A. A. Tanbakuchi, J. A. Udovich, A. R. Rouse, K. D. Hatch, and A. F. Gmitro, “In vivo imaging of ovarian tissue using a novel confocal microlaparoscope,” Am. J. Obstet. Gynecol. 202(1), 90.e1–90.e9 (2010). [CrossRef]
  3. Y. Zhao, A. E. Elsner, B. P. Haggerty, D. A. VanNasdale, and B. L. Petrig, "Laser scanning digital camera for retinal imaging with a 40 degree field of view," in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper FMG5.
  4. C. J. R. Sheppard and X. Q. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35(7), 1169–1185 (1988). [CrossRef]
  5. T. Wilson and S. J. Hewlett, “Imaging in scanning microscopes with slit-shaped detectors,” J. Microsc. 160(Pt 2), 115–139 (1990). [PubMed]
  6. A. A. Tanbakuchi, A. R. Rouse, J. A. Udovich, K. D. Hatch, and A. F. Gmitro, “Clinical confocal microlaparoscope for real-time in vivo optical biopsies,” J. Biomed. Opt. 14(4), 044030 (2009). [CrossRef] [PubMed]
  7. D. S. Gareau, S. Abeytunge, and M. Rajadhyaksha, “Line-scanning reflectance confocal microscopy of human skin: comparison of full-pupil and divided-pupil configurations,” Opt. Lett. 34(20), 3235–3237 (2009). [CrossRef] [PubMed]
  8. P. J. Dwyer, C. A. DiMarzio, and M. Rajadhyaksha, “Confocal theta line-scanning microscope for imaging human tissues,” Appl. Opt. 46(10), 1843–1851 (2007). [CrossRef] [PubMed]
  9. P. J. Dwyer, C. A. DiMarzio, J. M. Zavislan, W. J. Fox, and M. Rajadhyaksha, “Confocal reflectance theta line scanning microscope for imaging human skin in vivo,” Opt. Lett. 31(7), 942–944 (2006). [CrossRef] [PubMed]
  10. B. Simon and C. A. Dimarzio, “Simulation of a theta line-scanning confocal microscope,” J. Biomed. Opt. 12(6), 064020 (2007). [CrossRef] [PubMed]
  11. C. J. Koester, “Scanning mirror microscope with optical sectioning characteristics: applications in ophthalmology,” Appl. Opt. 19(11), 1749–1757 (1980). [CrossRef] [PubMed]
  12. E. H. K. Stelzer and S. Lindek, “Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy,” Opt. Commun. 111(5-6), 536–547 (1994). [CrossRef]
  13. R. H. Webb and F. Rogomentich, “Confocal microscope with large field and working distance,” Appl. Opt. 38(22), 4870–4875 (1999). [CrossRef] [PubMed]
  14. K. Si, W. Gong, and C. J. R. Sheppard, “Three-dimensional coherent transfer function for a confocal microscope with two D-shaped pupils,” Appl. Opt. 48(5), 810–817 (2009). [CrossRef] [PubMed]
  15. W. Gong, K. Si, and C. J. R. Sheppard, “Optimization of axial resolution in a confocal microscope with D-shaped apertures,” Appl. Opt. 48(20), 3998–4002 (2009) (H.). [CrossRef] [PubMed]
  16. W. Gong, K. Si, and C. J. R. Sheppard, “Divided-aperture technique for fluorescence confocal microscopy through scattering media,” Appl. Opt. 49(4), 752–757 (2010) (H.). [CrossRef] [PubMed]
  17. J. T. C. Liu, M. J. Mandella, J. M. Crawford, C. H. Contag, T. D. Wang, and G. S. Kino, “Efficient rejection of scattered light enables deep optical sectioning in turbid media with low-numerical-aperture optics in a dual-axis confocal architecture,” J. Biomed. Opt. 13(3), 034020 (2008). [CrossRef] [PubMed]
  18. J. T. C. Liu, M. J. Mandella, H. Ra, L. K. Wong, O. Solgaard, G. S. Kino, W. Piyawattanametha, C. H. Contag, and T. D. Wang, “Miniature near-infrared dual-axes confocal microscope utilizing a two-dimensional microelectromechanical systems scanner,” Opt. Lett. 32(3), 256–258 (2007) (H.). [CrossRef] [PubMed]
  19. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  20. C. A. DiMarzio, “Diffraction,” in Optics for Engineers (CRC Press, Boca Raton, FL, to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited