OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 8 — Aug. 1, 2011
  • pp: 2288–2298

Multimodal characterization of compositional, structural and functional features of human atherosclerotic plaques

Yang Sun, Abhijit J. Chaudhari, Matthew Lam, Hongtao Xie, Diego R. Yankelevich, Jennifer Phipps, Jing Liu, Michael C. Fishbein, Jonathan M. Cannata, K. Kirk Shung, and Laura Marcu  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 8, pp. 2288-2298 (2011)
http://dx.doi.org/10.1364/BOE.2.002288


View Full Text Article

Enhanced HTML    Acrobat PDF (1258 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Detection of atherosclerotic plaque vulnerability has critical clinical implications for avoiding sudden death in patients with high risk of plaque rupture. We report on multimodality imaging of ex-vivo human carotid plaque samples using a system that integrates fluorescence lifetime imaging (FLIM), ultrasonic backscatter microscopy (UBM), and photoacoustic imaging (PAI). Biochemical composition is differentiated with a high temporal resolution and sensitivity at the surface of the plaque by the FLIM subsystem. 3D microanatomy of the whole plaque is reconstructed by the UBM. Functional imaging associated with optical absorption contrast is evaluated from the PAI component. Simultaneous recordings of the optical, ultrasonic, and photoacoustic data present a wealth of complementary information concerning the plaque composition, structure, and function that are related to plaque vulnerability. This approach is expected to improve our ability to study atherosclerotic plaques. The multimodal system presented here can be translated into a catheter based intraluminal system for future clinical studies.

© 2011 OSA

OCIS Codes
(110.7170) Imaging systems : Ultrasound
(170.5120) Medical optics and biotechnology : Photoacoustic imaging
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Multimodal Imaging

History
Original Manuscript: May 2, 2011
Revised Manuscript: July 14, 2011
Manuscript Accepted: July 14, 2011
Published: July 19, 2011

Citation
Yang Sun, Abhijit J. Chaudhari, Matthew Lam, Hongtao Xie, Diego R. Yankelevich, Jennifer Phipps, Jing Liu, Michael C. Fishbein, Jonathan M. Cannata, K. Kirk Shung, and Laura Marcu, "Multimodal characterization of compositional, structural and functional features of human atherosclerotic plaques," Biomed. Opt. Express 2, 2288-2298 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-8-2288


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Libby, “Inflammation in atherosclerosis,” Nature 420(6917), 868–874 (2002). [CrossRef] [PubMed]
  2. I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39(4), 604–609 (2002). [CrossRef] [PubMed]
  3. N. Komiyama, G. J. Berry, M. L. Kolz, A. Oshima, J. A. Metz, P. Preuss, A. F. Brisken, M. P. Moore, P. G. Yock, and P. J. Fitzgerald, “Tissue characterization of atherosclerotic plaques by intravascular ultrasound radiofrequency signal analysis: an in vitro study of human coronary arteries,” Am. Heart J. 140(4), 565–574 (2000). [CrossRef] [PubMed]
  4. R. Richards-Kortum and E. M. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47(1), 555–606 (1996). [CrossRef] [PubMed]
  5. L. Marcu, Q. Fang, J. A. Jo, T. Papaioannou, A. Dorafshar, T. Reil, J. H. Qiao, J. D. Baker, J. A. Freischlag, and M. C. Fishbein, “In vivo detection of macrophages in a rabbit atherosclerotic model by time-resolved laser-induced fluorescence spectroscopy,” Atherosclerosis 181(2), 295–303 (2005). [CrossRef] [PubMed]
  6. L. V. Wang, “Tutorial on photoacoustic microscopy and computed tomography,” IEEE J. Sel. Top. Quantum Electron. 14(1), 171–179 (2008). [CrossRef]
  7. R. Virmani, A. P. Burke, A. Farb, and F. D. Kolodgie, “Pathology of the vulnerable plaque,” J. Am. Coll. Cardiol. 47(8Suppl), C13–C18 (2006). [CrossRef] [PubMed]
  8. D. S. Elson, J. A. Jo, and L. Marcu, “Miniaturized side-viewing imaging probe for fluorescence lifetime imaging (FLIM): validation with fluorescence dyes, tissue structural proteins and tissue specimens,” N. J. Phys. 9(127), 1–13 (2007).
  9. J. Phipps, Y. H. Sun, R. Saroufeem, N. Hatami, and L. Marcu, “Fluorescence lifetime imaging microscopy for the characterization of atherosclerotic plaques,” Proc. Soc. Photo Opt. Instrum. Eng. 7161, 71612G (2009). [PubMed]
  10. Y. Sun, J. Park, D. N. Stephens, J. A. Jo, L. Sun, J. M. Cannata, R. M. Saroufeem, K. K. Shung, and L. Marcu, “Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy,” Rev. Sci. Instrum. 80(6), 065104 (2009). [CrossRef] [PubMed]
  11. J. Yuan, S. Rhee, and X. N. Jiang, “60 MHz PMN-PT based 1-3 composite transducer for IVUS imaging,” Proc. IEEE IUS, 682–685 (2008).
  12. B. Wang, J. L. Su, J. Amirian, S. H. Litovsky, R. Smalling, and S. Emelianov, “Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging,” Opt. Express 18(5), 4889–4897 (2010). [CrossRef] [PubMed]
  13. D. N. Stephens, J. Park, Y. Sun, T. Papaioannou, and L. Marcu, “Intraluminal fluorescence spectroscopy catheter with ultrasound guidance,” J. Biomed. Opt. 14(3), 030505 (2009). [CrossRef] [PubMed]
  14. A. B. Karpiouk, B. Wang, and S. Y. Emelianov, “Development of a catheter for combined intravascular ultrasound and photoacoustic imaging,” Rev. Sci. Instrum. 81(1), 014901 (2010). [CrossRef] [PubMed]
  15. Y. H. Sun, R. Liu, D. S. Elson, C. W. Hollars, J. A. Jo, J. Park, Y. Sun, and L. Marcu, “Simultaneous time- and wavelength-resolved fluorescence spectroscopy for near real-time tissue diagnosis,” Opt. Lett. 33(6), 630–632 (2008). [CrossRef] [PubMed]
  16. Y. H. Sun, Y. Sun, D. Stephens, H. Xie, J. Phipps, R. Saroufeem, J. Southard, D. S. Elson, and L. Marcu, “Dynamic tissue analysis using time- and wavelength-resolved fluorescence spectroscopy for atherosclerosis diagnosis,” Opt. Express 19(5), 3890–3901 (2011). [CrossRef] [PubMed]
  17. J. M. Cannata, T. A. Ritter, W. H. Chen, R. H. Silverman, and K. K. Shung, “Design of efficient, broadband single-element (20-80 MHz) ultrasonic transducers for medical imaging applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(11), 1548–1557 (2003). [CrossRef] [PubMed]
  18. J. A. Jo, Q. Fang, T. Papaioannou, J. D. Baker, A. H. Dorafshar, T. Reil, J. H. Qiao, M. C. Fishbein, J. A. Freischlag, and L. Marcu, “Laguerre-based method for analysis of time-resolved fluorescence data: application to in-vivo characterization and diagnosis of atherosclerotic lesions,” J. Biomed. Opt. 11(2), 021004 (2006). [CrossRef] [PubMed]
  19. Y. H. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt. Lett. 34(13), 2081–2083 (2009). [CrossRef] [PubMed]
  20. Y. Sun, J. E. Phipps, M. Lam, H. Xie, M. C. Fishbein, J. M. Cannata, K. Kirk Shung, and L. Marcu, “Characterization of atherosclerotic plaques using combined time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy,” SPIE, 7883D–83, San Francisco, CA (2011).
  21. S. Y. Emelianov, S. R. Aglyamov, A. B. Karpiouk, S. Mallidi, S. Park, S. Sethuraman, J. Shah, R. W. Smalling, J. M. Rubin, and W. G. Scott, “Synergy and applications of combined ultrasound, elasticity, and photoacoustic imaging,” Proc. of IEEE Ultrasonics Symposium, 405–415 (2006).
  22. C. Studholme, D. L. G. Hill, and D. J. Hawkes, “An overlap invariant entropy measure of 3D medical image alignment,” Pattern Recognit. 32(1), 71–86 (1999). [CrossRef]
  23. L. Marcu, J. A. Jo, Q. Fang, T. Papaioannou, T. Reil, J. H. Qiao, J. D. Baker, J. A. Freischlag, and M. C. Fishbein, “Detection of rupture-prone atherosclerotic plaques by time-resolved laser-induced fluorescence spectroscopy,” Atherosclerosis 204(1), 156–164 (2009). [CrossRef] [PubMed]
  24. L. Marcu, W. S. Grundfest, and M. C. Fishbein, “Time-resolved laser-induced fluorescence spectroscopy for staging atherosclerotic lesions,” Handbook of Biomedical Fluorescence12, 397–430 (2003).
  25. L. Marcu, J. A. Jo, Q. Fang, T. Papaloannou, J. H. Qiao, M. C. Fishbein, J. D. Baker, and J. A. Freischlag, “Detection of high-risk atherosclerotic plaques by time-resolved laser induced fluorescence spectroscopy,” Circulation 112, U678 (2005).
  26. S. Sathyanarayana, S. Carlier, W. Li, and L. Thomas, “Characterisation of atherosclerotic plaque by spectral similarity of radiofrequency intravascular ultrasound signals,” EuroIntervention 5(1), 133–139 (2009). [CrossRef] [PubMed]
  27. S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling, and S. Y. Emelianov, “Ex vivo characterization of atherosclerosis using intravascular photoacoustic imaging,” Opt. Express 15(25), 16657–16666 (2007). [CrossRef] [PubMed]
  28. H. Xie, J. Bec, Y. Sun, and L. Marcu, “Development of an intravascular diagnostic system integrating an IVUS-guided rotational fiber optics catheter for time-resolved fluorescence spectroscopy,” 7890–15, SPIE, San Francisco, CA (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited