OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 8 — Aug. 1, 2011
  • pp: 2299–2306

How to integrate a micropipette into a closed microfluidic system: absorption spectra of an optically trapped erythrocyte

Ahmed Alrifaiy and Kerstin Ramser  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 8, pp. 2299-2306 (2011)
http://dx.doi.org/10.1364/BOE.2.002299


View Full Text Article

Enhanced HTML    Acrobat PDF (1211 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a new concept of integrating a micropipette within a closed microfluidic system equipped with optical tweezers and a UV-Vis spectrometer. A single red blood cell (RBC) was optically trapped and steered in three dimensions towards a micropipette that was integrated in the microfluidic system. Different oxygenation states of the RBC, triggered by altering the oxygen content in the microchannels through a pump system, were optically monitored by a UV-Vis spectrometer. The built setup is aimed to act as a multifunctional system where the biochemical content and the electrophysiological reaction of a single cell can be monitored simultaneously. The system can be used for other applications like single cell sorting, in vitro fertilization or electrophysiological experiments with precise environmental control of the gas-, and chemical content.

© 2011 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(220.4000) Optical design and fabrication : Microstructure fabrication
(280.2490) Remote sensing and sensors : Flow diagnostics
(300.1030) Spectroscopy : Absorption
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Microfluidics

History
Original Manuscript: May 23, 2011
Revised Manuscript: June 30, 2011
Manuscript Accepted: July 14, 2011
Published: July 20, 2011

Citation
Ahmed Alrifaiy and Kerstin Ramser, "How to integrate a micropipette into a closed microfluidic system: absorption spectra of an optically trapped erythrocyte," Biomed. Opt. Express 2, 2299-2306 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-8-2299


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987). [CrossRef] [PubMed]
  2. T. M. Squires and S. R. Quake, “Microfluidics: Fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77(3), 977–1026 (2005). [CrossRef]
  3. W. W. Hellmich, C. Pelargus, K. Leffhalm, A. Ros, and D. Anselmetti, “Single cell manipulation, analytics, and label-free protein detection in microfluidic devices for systems nanobiology,” Electrophoresis 26(19), 3689–3696 (2005). [CrossRef] [PubMed]
  4. S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57(3), 314–317 (1986). [CrossRef] [PubMed]
  5. A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990). [CrossRef] [PubMed]
  6. J. Yang, Y. Huang, X. B. Wang, F. F. Becker, and P. R. C. Gascoyne, “Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field-flow fractionation,” Anal. Chem. 71(5), 911–918 (1999). [CrossRef] [PubMed]
  7. I. K. Glasgow, H. C. Zeringue, D. J. Beebe, S. J. Choi, J. T. Lyman, N. G. Chan, and M. B. Wheeler, “Handling individual mammalian embryos using microfluidics,” IEEE Trans. Biomed. Eng. 48(5), 570–578 (2001). [CrossRef] [PubMed]
  8. D. Figeys, S. P. Gygi, G. McKinnon, and R. Aebersold, “An integrated microfluidics-tandem mass spectrometry system for automated protein analysis,” Anal. Chem. 70(18), 3728–3734 (1998). [CrossRef] [PubMed]
  9. Z. H. Fan, S. Mangru, R. Granzow, P. Heaney, W. Ho, Q. Dong, and R. Kumar, “Dynamic DNA hybridization on a chip using paramagnetic beads,” Anal. Chem. 71(21), 4851–4859 (1999). [CrossRef] [PubMed]
  10. D. D. Cunningham, “Fluidics and sample handling in clinical chemical analysis,” Anal. Chim. Acta 429(1), 1–18 (2001). [CrossRef]
  11. F. S. Ligler, “Perspective on optical biosensors and integrated sensor systems,” Anal. Chem. 81(2), 519–526 (2009). [CrossRef] [PubMed]
  12. B. H. Weigl, R. L. Bardell, and C. R. Cabrera, “Lab-on-a-chip for drug development,” Adv. Drug Deliv. Rev. 55(3), 349–377 (2003). [CrossRef] [PubMed]
  13. L. Yao, B. Liu, T. Chen, S. Liu, and T. Zuo, “Micro flow-through PCR in a PMMA chip fabricated by KrF excimer laser,” Biomed. Microdevices 7(3), 253–257 (2005). [CrossRef] [PubMed]
  14. M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed. (CRC Press, 2002).
  15. Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998). [CrossRef]
  16. P. Abgrall, L. N. Low, and N. T. Nguyen, “Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding,” Lab Chip 7(4), 520–522 (2007). [CrossRef] [PubMed]
  17. S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006). [CrossRef] [PubMed]
  18. H. Qi, X. Wang, T. Chen, X. Ma, and T. Zuo, “Fabrication and characterization of a polymethyl methacrylate continuous-flow PCR microfluidic chip using CO2 laser ablation,” Microsyst. Technol. 15(7), 1027–1030 (2009). [CrossRef]
  19. P. Liuni, T. Rob, and D. J. Wilson, “A microfluidic reactor for rapid, low-pressure proteolysis with on-chip electrospray ionization,” Rapid Commun. Mass Spectrom. 24(3), 315–320 (2010). [CrossRef]
  20. G. B. Lee, S. H. Chen, G. R. Huang, W. C. Sung, and Y. H. Lin, “Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection,” Sens. Actuators B Chem. 75(1-2), 142–148 (2001). [CrossRef]
  21. O. Loh, R. Lam, M. Chen, N. Moldovan, H. Huang, D. Ho, and H. D. Espinosa, “Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds,” Small 5(14), 1667–1674 (2009). [CrossRef] [PubMed]
  22. N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, and L. Ballerini, “Nanomaterials for Neural Interfaces,” Adv. Mater. (Deerfield Beach Fla.) 21(40), 3970–4004 (2009). [CrossRef]
  23. K. Ramser and D. Hanstorp, “Optical manipulation for single-cell studies,” J Biophotonics 3(4), 187–206 (2010). [CrossRef] [PubMed]
  24. K. Schütze, H. Pösl, and G. Lahr, “Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine,” Cell. Mol. Biol. (Noisy-le-grand) 44(5), 735–746 (1998). [PubMed]
  25. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987). [CrossRef] [PubMed]
  26. K. Kim, S. Kang, K. Matsumoto, and H. Minamitani, “Thin film waveguide sensor for measurenlent of the absorption coefficient of hemoglobin derivatives,” Opt. Rev. 5(4), 257–261 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited