OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 8 — Aug. 1, 2011
  • pp: 2339–2347

Terahertz reflectometry of burn wounds in a rat model

M. Hassan Arbab, Trevor C. Dickey, Dale P. Winebrenner, Antao Chen, Mathew B. Klein, and Pierre D. Mourad  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 8, pp. 2339-2347 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1304 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present sub-millimeter wave reflectometry of an experimental rat skin burn model obtained by the Terahertz Time-Domain Spectroscopy (THz-TDS) technique. Full thickness burns, as confirmed by histology, were created on rats (n = 4) euthanized immediately prior to the experiments. Statistical analysis shows that the burned tissue exhibits higher reflectivity compared to normal skin over a frequency range between 0.5 and 0.7 THz (p < 0.05), likely due to post-burn formation of interstitial edema. Furthermore, we demonstrate that a double Debye dielectric relaxation model can be used to explain the terahertz response of both normal and less severely burned rat skin. Finally, our data suggest that the degree of conformation between the experimental burn measurements and the model for normal skin can potentially be used to infer the extent of burn severity.

© 2011 OSA

OCIS Codes
(170.1610) Medical optics and biotechnology : Clinical applications
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(300.6495) Spectroscopy : Spectroscopy, teraherz
(170.6795) Medical optics and biotechnology : Terahertz imaging

ToC Category:
Spectroscopic Diagnostics

Original Manuscript: May 19, 2011
Revised Manuscript: July 13, 2011
Manuscript Accepted: July 15, 2011
Published: July 21, 2011

M. Hassan Arbab, Trevor C. Dickey, Dale P. Winebrenner, Antao Chen, Mathew B. Klein, and Pierre D. Mourad, "Terahertz reflectometry of burn wounds in a rat model," Biomed. Opt. Express 2, 2339-2347 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Gómez and L. C. Cancio, “Management of burn wounds in the emergency department,” Emerg. Med. Clin. North Am. 25(1), 135–146 (2007). [CrossRef] [PubMed]
  2. B. S. Atiyeh, S. W. Gunn, and S. N. Hayek, “State of the art in burn treatment,” World J. Surg. 29(2), 131–148 (2005). [CrossRef] [PubMed]
  3. J. M. Still, E. J. Law, K. G. Klavuhn, T. C. Island, and J. Z. Holtz, “Diagnosis of burn depth using laser-induced indocyanine green fluorescence: a preliminary clinical trial,” Burns 27(4), 364–371 (2001). [CrossRef] [PubMed]
  4. M. A. Afromowitz, J. B. Callis, D. M. Heimbach, L. A. DeSoto, and M. K. Norton, “Multispectral imaging of burn wounds: a new clinical instrument for evaluating burn depth,” IEEE Trans. Biomed. Eng. 35(10), 842–850 (1988). [CrossRef] [PubMed]
  5. H. A. Green, D. Bua, R. R. Anderson, and N. S. Nishioka, “Burn depth estimation using indocyanine green fluorescence,” Arch. Dermatol. 128(1), 43–49 (1992). [CrossRef] [PubMed]
  6. M. J. Koruda, A. Zimbler, R. G. Settle, D. O. Jacobs, R. H. Rolandelli, G. L. Wolf, and J. L. Rombeau, “Assessing burn wound depth using in vitro nuclear magnetic resonance (NMR),” J. Surg. Res. 40(5), 475–481 (1986). [CrossRef] [PubMed]
  7. A. D. Jaskille, J. C. Ramella-Roman, J. W. Shupp, M. H. Jordan, and J. C. Jeng, “Critical review of burn depth assessment techniques: part II. Review of laser doppler technology,” J. Burn Care Res. 31(1), 151–157 (2010). [CrossRef] [PubMed]
  8. S. Iraniha, M. E. Cinat, V. M. VanderKam, A. Boyko, D. Lee, J. Jones, and B. M. Achauer, “Determination of burn depth with noncontact ultrasonography,” J. Burn Care Rehabil. 21(4), 333–338 (2000). [CrossRef] [PubMed]
  9. A. Papp, T. Lahtinen, M. Härmä, J. Nuutinen, A. Uusaro, and E. Alhava, “Dielectric measurement in experimental burns: a new tool for burn depth determination?” Plast. Reconstr. Surg. 117(3), 889–898 (2006). [CrossRef] [PubMed]
  10. S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004). [CrossRef] [PubMed]
  11. M. G. Sowa, L. Leonardi, J. R. Payette, K. M. Cross, M. Gomez, and J. S. Fish, “Classification of burn injuries using near-infrared spectroscopy,” J. Biomed. Opt. 11(5), 054002 (2006). [CrossRef] [PubMed]
  12. K. M. Cross, L. Leonardi, J. R. Payette, M. Gomez, M. A. Levasseur, B. J. Schattka, M. G. Sowa, and J. S. Fish, “Clinical utilization of near-infrared spectroscopy devices for burn depth assessment,” Wound Repair Regen. 15(3), 332–340 (2007). [CrossRef] [PubMed]
  13. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004). [CrossRef]
  14. E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006). [CrossRef]
  15. A. J. Fitzgerald, E. Berry, N. N. Zinov’ev, S. Homer-Vanniasinkam, R. E. Miles, J. M. Chamberlain, and M. A. Smith, “Catalogue of human tissue optical properties at terahertz frequencies,” J. Biol. Phys. 29(2/3), 123–128 (2003). [CrossRef]
  16. E. Pickwell, B. E. Cole, A. J. Fitzgerald, V. P. Wallace, and M. Pepper, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84(12), 2190–2192 (2004). [CrossRef]
  17. E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004). [CrossRef] [PubMed]
  18. D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999). [CrossRef]
  19. Z. D. Taylor, R. S. Singh, M. O. Culjat, J. Y. Suen, W. S. Grundfest, H. Lee, and E. R. Brown, “Reflective terahertz imaging of porcine skin burns,” Opt. Lett. 33(11), 1258–1260 (2008). [CrossRef] [PubMed]
  20. Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67(24), 3523–3525 (1995). [CrossRef]
  21. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011). [CrossRef]
  22. R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002). [CrossRef] [PubMed]
  23. J. T. Kindt and C. A. Schmuttenmaer, “Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy,” J. Phys. Chem. 100(24), 10373–10379 (1996). [CrossRef]
  24. T. W. Panke and C. G. McLeod, Pathology of Thermal Injury: a Practical Approach (Grune & Stratton, 1985).
  25. A. M. I. Watts, M. P. H. Tyler, M. E. Perry, A. H. N. Roberts, and D. A. McGrouther, “Burn depth and its histological measurement,” Burns 27(2), 154–160 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited