Spin angular momentum transfer from TEM_{00} focused Gaussian beams to negative refractive index spherical particles |
Biomedical Optics Express, Vol. 2, Issue 8, pp. 2354-2363 (2011)
http://dx.doi.org/10.1364/BOE.2.002354
Enhanced HTML Acrobat PDF (1100 KB)
Abstract
We investigate optical torques over absorbent negative refractive index spherical scatterers under the influence of linear and circularly polarized TEM_{00} focused Gaussian beams, in the framework of the generalized Lorenz-Mie theory with the integral localized approximation. The fundamental differences between optical torques due to spin angular momentum transfer in positive and negative refractive index optical trapping are outlined, revealing the effect of the Mie scattering coefficients in one of the most fundamental properties in optical trapping systems.
© 2011 OSA
OCIS Codes
(080.0080) Geometric optics : Geometric optics
(290.4020) Scattering : Mie theory
(350.3618) Other areas of optics : Left-handed materials
(160.3918) Materials : Metamaterials
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
ToC Category:
Optical Traps, Manipulation, and Tracking
History
Original Manuscript: May 2, 2011
Revised Manuscript: July 21, 2011
Manuscript Accepted: July 22, 2011
Published: July 22, 2011
Citation
Leonardo A. Ambrosio and Hugo E. Hernández-Figueroa, "Spin angular momentum transfer from TEM_{00} focused Gaussian beams to negative refractive index spherical particles," Biomed. Opt. Express 2, 2354-2363 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-8-2354
Sort: Year | Journal | Reset
References
- D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000). [CrossRef] [PubMed]
- R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef] [PubMed]
- V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968). [CrossRef]
- R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 056625 (2001). [CrossRef] [PubMed]
- A. Grbic and G. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial,” J. Appl. Phys. 92(10), 5930–5935 (2002). [CrossRef]
- J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
- N. Engheta and R. Ziolkowski, “A positive future for double-negative metamaterials,” IEEE Trans. Microw. Theory Tech. 53(4), 1535–1556 (2005). [CrossRef]
- A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005). [CrossRef] [PubMed]
- N. Engheta and R. Ziolkowski, Metamaterials – Physics and Engineering Explorations (IEEE Press, Wiley-Interscience, John Wiley & Sons, 2006).
- C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (IEEE Press, Wiley-Interscience, John Wiley & Sons, 2006).
- S. Zouhdi, A. Sihvola, and A. P. Vinogradov, Metamaterials and Plasmonics: Fundamentals, Modelling, Applications (Springer, NATO, 2008).
- Z. Ye, “Optical transmission and reflection of perfect lenses by left handed materials,” Phys. Rev. B 67(19), 193106 (2003). [CrossRef]
- A. N. Lagarkov and V. N. Kissel, “Near-perfect imaging in a focusing system based on a left-handed-material plate,” Phys. Rev. Lett. 92(7), 077401 (2004). [CrossRef] [PubMed]
- D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004). [CrossRef] [PubMed]
- L. A. Ambrosio and H. E. Hernández-Figueroa, “Double-negative optical trapping,” in Biomedical Optics (BIOMED/Digital Holography and Three-Dimensional Imaging) on CD-ROM’10/OSA, BSuD83, Miami, USA, 11–14 April 2010.
- L. A. Ambrosio and H. E. Hernández-Figueroa, “Trapping double negative particles in the ray optics regime using optical tweezers with focused beams,” Opt. Express 17(24), 21918–21924 (2009). [CrossRef] [PubMed]
- L. A. Ambrosio and H. E. Hernández-Figueroa, “Fundamentals of negative refractive index optical trapping: forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz-Mie theory,” Biomed. Opt. Express 1(5), 1284–1301 (2010). [CrossRef] [PubMed]
- L. A. Ambrosio and H. E. Hernández-Figueroa, “Gradient forces on double-negative particles in optical tweezers using Bessel beams in the ray optics regime,” Opt. Express 18(23), 24287–24292 (2010). [CrossRef] [PubMed]
- L. A. Ambrosio and H. E. Hernández-Figueroa, “Radiation pressure cross-sections and optical forces over negative refractive index spherical particles by ordinary Bessel beams,” to appear in Appl. Opt.
- P. L. Marston and J. H. Crichton, “Radiation torque on a sphere caused by a circularly-polarized electromagnetic beam,” Phys. Rev. A 30(5), 2508–2516 (1984). [CrossRef]
- V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002). [CrossRef]
- K. Volke-Sepulveda, V. Garcés-Chavez, S. Chávez-Cerda, J. Arlt, and D. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt. 4(2), S82–S89 (2002). [CrossRef]
- H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155(1-3), 169–179 (1998). [CrossRef]
- G. Mie, “Beiträge zur Optik Trüber Medien, Speziell Kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908). [CrossRef]
- C. F. Bohren and D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, John Wiley & Sons, 1983).
- G. Gouesbet and G. Gréhan, “Sur la généralisation de la théorie de Lorenz-Mie,” J. Opt. (Paris) 13, 97–103 (1982).
- B. Maheu, G. Gouesbet, and G. Gréhan, “A concise presentation of the generalized Lorenz-Mie theory for arbitrary incident profile,” J. Opt. (Paris) 19, 59–67 (1988).
- K. F. Ren, G. Gréhan, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108(4-6), 343–354 (1994). [CrossRef]
- K. F. Ren, G. Gréhan, and G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz-Mie theory,” Appl. Opt. 35(15), 2702–2710 (1996). [CrossRef] [PubMed]
- J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989). [CrossRef]
- L. A. Ambrosio and H. E. Hernández-Figueroa, “Optical torque analysis of double-negative optical trapping with focused Gaussian beams,” in Latin America Optics and Photonics on CD-ROM’10/OSA, Tu05, Recife, Brazil, 27–30 September 2011.
- K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized lorenz-mie theory,” Appl. Opt. 37(19), 4218–4225 (1998). [CrossRef] [PubMed]
- L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19(3), 1177–1179 (1979). [CrossRef]
- A. Wunsche, “Transition from the paraxial approximation to exact solutions of the wave equation and application to Gaussian beams,” J. Opt. Soc. Am. A 9(5), 765–774 (1992). [CrossRef]
- J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. I. on-axis beams,” J. Opt. Soc. Am. A 11(9), 2503–2515 (1994). [CrossRef]
- J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. II. off-axis beams,” J. Opt. Soc. Am. A 11(9), 2516–2525 (1994). [CrossRef]
- K. R. Fen, Diffusion des Faisceaux Feuille Laser par une Particule Sphérique et Applications aux Ecoulements Diphasiques (Ph.D thesis, Faculté des Sciences de L’Université de Rouen, 1995).
- A. E. Miroshnichenko, “Non-Rayleigh limit of the Lorenz-Mie solution and suppression of scattering by spheres of negative refractive index,” Phys. Rev. A 80(1), 013808 (2009). [CrossRef]
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
« Previous Article | Next Article »
OSA is a member of CrossRef.