OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 8 — Aug. 1, 2011
  • pp: 2403–2416

Automated 3-D method for the correction of axial artifacts in spectral-domain optical coherence tomography images

Bhavna Antony, Michael D. Abràmoff, Li Tang, Wishal D. Ramdas, Johannes R. Vingerling, Nomdo M. Jansonius, Kyungmoo Lee, Young H. Kwon, Milan Sonka, and Mona K. Garvin  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 8, pp. 2403-2416 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (4411 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The 3-D spectral-domain optical coherence tomography (SD-OCT) images of the retina often do not reflect the true shape of the retina and are distorted differently along the x and y axes. In this paper, we propose a novel technique that uses thin-plate splines in two stages to estimate and correct the distinct axial artifacts in SD-OCT images. The method was quantitatively validated using nine pairs of OCT scans obtained with orthogonal fast-scanning axes, where a segmented surface was compared after both datasets had been corrected. The mean unsigned difference computed between the locations of this artifact-corrected surface after the single-spline and dual-spline correction was 23.36 ± 4.04 μm and 5.94 ± 1.09 μm, respectively, and showed a significant difference (p < 0.001 from two-tailed paired t-test). The method was also validated using depth maps constructed from stereo fundus photographs of the optic nerve head, which were compared to the flattened top surface from the OCT datasets. Significant differences (p < 0.001) were noted between the artifact-corrected datasets and the original datasets, where the mean unsigned differences computed over 30 optic-nerve-head-centered scans (in normalized units) were 0.134 ± 0.035 and 0.302 ± 0.134, respectively.

© 2011 OSA

OCIS Codes
(100.0100) Image processing : Image processing
(100.6890) Image processing : Three-dimensional image processing
(110.4500) Imaging systems : Optical coherence tomography

ToC Category:
Optical Coherence Tomography

Original Manuscript: June 20, 2011
Revised Manuscript: July 13, 2011
Manuscript Accepted: July 19, 2011
Published: July 27, 2011

Bhavna Antony, Michael D. Abràmoff, Li Tang, Wishal D. Ramdas, Johannes R. Vingerling, Nomdo M. Jansonius, Kyungmoo Lee, Young H. Kwon, Milan Sonka, and Mona K. Garvin, "Automated 3-D method for the correction of axial artifacts in spectral-domain optical coherence tomography images," Biomed. Opt. Express 2, 2403-2416 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005). [CrossRef] [PubMed]
  3. M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28, 1436–1447 (2009). [CrossRef] [PubMed]
  4. V. Kajić, B. Považay, B. Hermann, B. Hofer, D. Marshall, P. Rosin, P., and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express 20, 4730–14744 (2010).
  5. M. Niemeijer, M. K. Garvin, K. Lee, B. van Ginneken, M. D. Abràmoff, and M. Sonka, “Registration of 3D spectral OCT volumes using 3D SIFT feature point matching,” Proc. SPIE 7259, 72591I (2009). [CrossRef]
  6. H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46, 2012–2017 (2005). [CrossRef] [PubMed]
  7. P. Thevenaz, U. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7, 27–41 (1998). [CrossRef]
  8. M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, “Image processing with ImageJ,” Biophoton. Int. 11, 36–42 (2004).
  9. R. J. Zawadzki, A. R. Fullerb, S. S. Choia, D. F. Wileyb, B. Hamannb, and J. S. Wernera, “Correction of motion artifacts and scanning beam distortions in 3-D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607 (2007). [CrossRef]
  10. A. R. Fuller, R. J. Zawadzki, S. Choi, D. F. Wiley, J. S. Werner, and B. Hamann, “Segmentation of three-dimensional retinal image data,” IEEE Trans. Vis. Comput. Graph. 13, 1719–1726 (2007). [CrossRef] [PubMed]
  11. R. Zawadzki, S. Choi, S. Jones, S. Oliver, and J. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. 24, 1373–1383 (2009). [CrossRef]
  12. A. Khanifar, A. Koreishi, J. Izatt, and C. Toth, “Drusen ultrastructure imaging with spectral domain optical coherence tomography in age-related macular degeneration,” Ophthalmology 115, 1883–1890 (2008). [CrossRef] [PubMed]
  13. S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” in Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI) LNCS 5761, pp. 100–107 (2009).
  14. M. Kraus, M. A. Mayer, R. Bock, B. Potsaid, V. Manjunath, J. S. Duker, J. Hornegger, and J. G. Fujimot, “Motion artifact correction in OCT volume scans using image registration,” Invest. Ophthalmol. Vis. Sci. 51, ARVO E-Abstract 4405 (2010).
  15. X. Song, R. Estrada, S. J. Chiu, A. Dhalla, C.A. Toth, J. A. Izatt, and S. Farsiu, “Segmentation-based registration of retinal optical coherence tomography images with pathology,” Invest. Ophthalmol. Vis. Sci. 52, ARVO E-Abstract 1309 (2011). [PubMed]
  16. J. Duchon, “Splines minimizing rotation-invariant semi-norms in Sobolev spaces,” in Constructive Theory of Functions of Several Variables (Springer-Verlag, 1977), pp. 85–100. [CrossRef]
  17. F. L. Bookstein, “Principal warps: thin-plate splines and the decomposition of deformations,” IEEE Trans. Pattern Anal. Machine Intell. 11, 567–585 (1989). [CrossRef]
  18. M. J. D. Powell, “The uniform convergence of thin plate spline interpolation in two dimensions,” Numerische Math. 68, 107–128 (1994). [CrossRef]
  19. Z. Hu, M. D. Abràmoff, Y. H. Kwon, K. Lee, and M. K. Garvin, “Automated segmentation of neural canal opening and optic cup in 3D spectral optical coherence tomography volumes of the optic nerve head,” Invest. Ophthalmol. Vis. Sci. 51, 5708–5717 (2010). [CrossRef] [PubMed]
  20. R. C. Wolfs, P. H. Borger, R. S. Ramrattan, C. C. Klaver, C. A. Hulsman, A. Hofman, J. R. Vingerling, R. A. Hitchings, and P. T. de Jong, “Changing views on open-angle glaucoma: definitions and prevalences-the Rotterdam study,” Invest. Ophthalmol. Vis. Sci. 41, 3309–3321 (2000). [PubMed]
  21. A. Hofman, M. M. B. Breteler, C. M. Van Duijn, H. L. A Janssen, G. P. Krestin, E. J. Kuipers, B. C. H. Stricker, H. Tiemeier, A. G. Uitterlinden, J. R. Vingerling, and J. C. M. Witteman, “The Rotterdam Study: 2010 objectives and design update,” Eur. J. Epidemiol. 24, 553–572 (2009). [CrossRef] [PubMed]
  22. M. A. Czudowska, W. D. Ramdas, R. C. Wolfs, A. Hofman, P. T. De Jong, J. R. Vingerling, and N. M. Jansonius, “Incidence of glaucomatous visual field loss: a ten-year follow-up from the Rotterdam study,” Ophthalmology 117, 1705–1712 (2010). [CrossRef] [PubMed]
  23. M. Niemeijer, M. K. Garvin, B. van Ginneken, M. Sonka, and M. D. Abràmoff, “Vessel segmentation in 3-D spectral OCT scans of the retina,” Proc. SPIE 6914, 69141R (2008). [CrossRef]
  24. L. Tang, M. K. Garvin, K. Lee, W. L. M. Alward, Y. H. Kwon, and M. D. Abràmoff, “Robust multi-scale stereo matching from funuds images with radiometric differences,” IEEE Trans. Pattern Anal. Machine Intell . in press.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited