OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 8 — Aug. 1, 2011
  • pp: 2417–2437

Reflectivity and topography of cells grown on glass-coverslips measured with phase-shifted laser feedback interference microscopy

Erdinç Atılgan and Ben Ovryn  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 8, pp. 2417-2437 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2552 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In spite of the advantages associated with the molecular specificity of fluorescence imaging, there is still a significant need to augment these approaches with label-free imaging. Therefore, we have implemented a form of interference microscopy based upon phase-shifted, laser-feedback interferometry and developed an algorithm that can be used to separate the contribution of the elastically scattered light by sub-cellular structures from the reflection at the coverslip-buffer interface. The method offers an opportunity to probe protein aggregation, index of refraction variations and structure. We measure the topography and reflection from calibration spheres and from stress fibers and adhesions in both fixed and motile cells. Unlike the data acquired with reflection interference contrast microscopy, where the reflection from adhesions can appear dark, our approach demonstrates that these regions have high reflectivity. The data acquired from fixed and live cells show the presence of a dense actin layer located ≈ 100 nm above the coverslip interface. Finally, the measured dynamics of filopodia and the lamella in a live cell supports retrograde flow as the dominate mechanism responsible for filopodia retraction.

© 2011 OSA

OCIS Codes
(170.1530) Medical optics and biotechnology : Cell analysis
(180.3170) Microscopy : Interference microscopy

ToC Category:
Cell Studies

Original Manuscript: May 2, 2011
Revised Manuscript: July 5, 2011
Manuscript Accepted: July 15, 2011
Published: July 27, 2011

Erdinç Atılgan and Ben Ovryn, "Reflectivity and topography of cells grown on glass-coverslips measured with phase-shifted laser feedback interference microscopy," Biomed. Opt. Express 2, 2417-2437 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. S. G. Curtis, “The mechanism of adhesion of cells to glass. A study by interference reflection microscopy,” J. Cell Biol. 20(2), 199–215 (1964). [CrossRef] [PubMed]
  2. H. Verschueren, “Interference reflection microscopy in cell biology: Methodology and applications,” J. Cell Sci. 75(1), 279–301 (1985). [PubMed]
  3. I. Weber, “Reflection interference contrast microscopy,” Meth. Enzymol. 361, 34–47 (2003). [CrossRef] [PubMed]
  4. C. Izzard and L. Lochner, “Cell-to-substrate contacts in living fibroblasts: an interference reflexion study with an evaluation of the technique,” J. Cell Sci. 21, 129–159 (1976). [PubMed]
  5. J. Radler and E. Sackmann, “On the measurement of weak repulsive and frictional colloidal forces by reflection interference contrast microscopy,” Langmuir 8(3), 848–853 (1992). [CrossRef]
  6. A. S. Smith and E. Sackmann, “Progress in mimetic studies of cell adhesion and the mechanosensing,” ChemPhysChem 10(1), 66–78 (2009). [CrossRef]
  7. L. Limozin and K. Sengupta, “Quantitative reflection interference contrast microscopy (RICM) in soft matter and cell adhesion,” ChemPhysChem 10(16), 2752–2768 (2009). [CrossRef] [PubMed]
  8. K. Salaita, P. M. Nair, R. S. Petit, R. M. Neve, D. Das, J. W. Gray, and J. T. Groves, “Restriction of receptor movement alters cellular response: physical force sensing by EphA2,” Science 327(5971), 1380–1385 (2010). [CrossRef] [PubMed]
  9. Y. Iwanaga, Y. D. Braun, and P. Fromherz, “No correlation of focal contacts and close adhesion by comparing GFP-vinculin and fluorescence interference of DiI,” Eur. Biophys. J. 30(1), 17–26 (2001). [CrossRef] [PubMed]
  10. R. Parthasarathy and J. T. Groves, “Optical techniques for imaging membrane topography,” Cell. Biochem. Biophys. 1(3), 391–414 (2004). [CrossRef]
  11. J. T. Groves, R. Parthasarathy, and M. B. Forstner, “Fluorescence imaging of membrane dynamics,” Annu. Rev. Biomed. Eng. 10, 311–338 (2008). [CrossRef] [PubMed]
  12. P. V. Ganesan and S. G. Boxer, “A membrane interferometer,” Proc. Nat. Acad. Sci. U.S.A. 106(14), 5627–5632 (2009). [CrossRef]
  13. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  14. H. Shroff, C. G. Galbraith, J. A. Galbraith, H. White, J. Gillette, S. Olenych, M. W. Davidson, and E. Betzig, “Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes,” Proc. Nat. Acad. Sci. U.S.A. 104(51), 20308–20313 (2007). [CrossRef]
  15. G. Shroff, C. G Hari, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Meth. 5, 417–423 (2008). [CrossRef]
  16. G. Gauglitz and G. Proll, “Strategies for label-free optical detection,” Adv. Biochem. Eng. Biotech. 109, 395–432 (2008).
  17. D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sorensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science 317(5845), 1732 (2007). [CrossRef] [PubMed]
  18. B. Ovryn, “Three-dimensional forward scattering particle image velocimetry applied to a microscopic field-of-view,” Exp. Fluids 29(1), S175–S184 (2000). [CrossRef]
  19. H. Ding, L. J. Millet, M. U. Gillette, and G. Popescu, “Actin-driven cell dynamics probed by Fourier transform light scattering,” Biomed. Opt. Express 1(1), 260–267 (2010). [CrossRef]
  20. H. F. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008). [CrossRef] [PubMed]
  21. N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17(18), 15585–15591 (2009) [CrossRef] [PubMed]
  22. N. T. Shaked, L. L. Satterwhite, N. Bursac, and A Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed. Opt. Express 1(2), 706–719 (2010) [CrossRef]
  23. C. H. Wang, J. Y. Lin, and C. H. Lee, “Membrane ripples of a living cell measured by non-interferometric wide-field optical profilometry,” Opt. Express 13(26), 10665–10672 (2005). [CrossRef] [PubMed]
  24. C. H. Chen, F. C. Tsai, C. C. Wang, and C. H. Lee, “Three-dimensional characterization of active membrane waves on living cells,” Phys. Rev. Lett. 103238101 (2009). [CrossRef]
  25. C. J. R. Sheppard, M. Roy, and M. D. Sharma, “Image formation in low-coherence and confocal interference microscopes,” Appl. Opt. 43(7), 1493–1502 (2004). [CrossRef] [PubMed]
  26. T. H. Peek, P. T. Bolwijn, and C. T. J. Alkemade, “Axial mode number of gas lasers from moving-mirror experiments,” Am. J. Phys. 35(9), 820–831 (1967). [CrossRef]
  27. A. Bearden, M. P. O’Neill, L. C. Osborne, and T. L. Wong, “Imaging and vibrational analysis with laser-feedback interferometry,” Opt. Lett. 18(3), 238–240 (1993). [CrossRef] [PubMed]
  28. R. Juskaitis, N. Rea, and T. Wilson, “Fibre-optic based confocal microscopy using laser detection,” Opt. Commun. 99(1), 105–113 (1993). [CrossRef]
  29. B. Ovryn and J. H. Andrews, “Phase-shifted laser feedback interferometry,” Opt. Lett. 23(14), 1078–1080 (1998). [CrossRef]
  30. B. Ovryn and J. H. Andrews, “Measurement of changes in optical path length and reflectivity with phase-shifting laser feedback interferometry,” Appl. Opt. 38(10), 1959–1967 (1999). [CrossRef]
  31. E. Atilgan and B. Ovryn, “Membrane deformation at integrin adhesions,” Curr. Pharma. Biotechnol. 10(5), 508–514 (2009). [CrossRef]
  32. H. Wolfenson, Y. I. Henis, B. Geiger, and A. D. Bershadsky, “The heel and toe of the cells foot: a multifaceted approach for understanding the structure and dynamics of focal adhesions,” Cell Motil. Cytoskeleton. 66(11), 1017–1029 (2009). [CrossRef] [PubMed]
  33. A. D. Dubash, M. M. Menold, T. Samson, E. Boulter, R. Garcia-Mata, R. Doughman, and K. Burridge, “Focal adhesions: new angles on an old structure,” Int. Rev. Cell Mol. Biol. 277, 1–65 (2009). [CrossRef] [PubMed]
  34. J. B. Keller, “Inverse problems,” A. Math. Mon. 83(2), 107–118 (1976). [CrossRef]
  35. J J. Radler and E. Sackmann, “Imaging optical thicknesses and separation distances of phospholipid vesicles at solid surfaces,” J. Phys. II France 3(5), 727–748 (1993). [CrossRef]
  36. N. G. Clack and J. T. Groves, “Many-particle tracking with nanometer resolution in three dimensions by reflection interference contrast microscopy,” Langmuir 21(14), 6430–6435 (2005). [CrossRef] [PubMed]
  37. I. I. Singer, S. Scott, D. W. Kawka, D. M. Kazazis, J. Gailit, and E. Ruoslahti, “Cell surface distribution of fibronectin and vitronectin receptors depends on substrate composition and extracellular matrix accumulation.” J. Cell Biol. 106(6), 2171–2182 (1988). [CrossRef] [PubMed]
  38. X. Ma, J.Q. Lu, R. S. Brock, K. M. Jacobs, and X.H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003). [CrossRef]
  39. W. Wang, J. B. Wycko, V. C. Frohlich, Y. Oleynikov, S. Huttelmaier, J. Zavadil, L. Cermak, E. P. Bottinger, R. H. Singer, J. G. White, J. E. Segall, and J. S. Condeelis, “Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling,” Cancer Res. 62, 6278–6288 (2002). [PubMed]
  40. G. L. Nicolson, “Differential organ tissue adhesion, invasion, and growth properties of metastatic rat mammary adenocarcinoma cells,” Breast Cancer Res. Treat. 12(2), 167–176 (1988). [CrossRef] [PubMed]
  41. P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26(13), 2504–2506 (1987). [CrossRef] [PubMed]
  42. K. Creath, “Phase measurement interferometry techniques,” in Progress in Optics , E. Wolf eds. (North-Holland, 1988) XXVI349–393. [CrossRef]
  43. Y. Y. Cheng and J. C. Wyant, “Two-wavelength phase shifting interferometry,” Appl. Oct. 23(24), 4539–4543 (1984). [CrossRef]
  44. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1998).
  45. G. J. R. Sheppard and H. J. Matthews, “Imaging in high-aperture optical systems,” J. Opt. Soc. Am. A 4(8), 1354–1360 (1987). [CrossRef]
  46. S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J. 83(4), 2300–2317 (2002). [CrossRef] [PubMed]
  47. C. J. R. Sheppard and K. G. Larkin, “Effect of numerical aperture on interference fringe spacing,” Appl. Opt. 34(22), 4731–4734 (1995). [CrossRef] [PubMed]
  48. J. Hwang and W. Moerner, “Interferometry of a single nanoparticle using the Gouy phase of a focused laser beam,” Opt. Commun. 280(2), 487–491 (2007). [CrossRef]
  49. I. G. E. Renhorn and G. D. Boreman, “Analytical fitting model for rough-surface BRDF,” Opt. Express 16(17), 12892–12898 (2008). [CrossRef] [PubMed]
  50. X. D. He, K. E. Torrance, F. X. Sillion, and D. P. Greenberg, “A comprehensive physical model for light reflection,” SIGGRAPH Comput. Graph. 25(4), 175–186 (1991). [CrossRef]
  51. D. G. Fischer and B. Ovryn, “Interfacial shape and contact-angle measurement of transparent samples with confocal interference microscopy,” Opt. Lett. 25(7), 478–480 (2000). [CrossRef]
  52. S. K. Mitra, D. A. Hanson, and D. D. Schlaepfer, “Focal adhesion kinase: in command and control of cell motility,” Nat. Rev. Mol. Cell Biol. 6(1), 56–68 (2005). [CrossRef] [PubMed]
  53. S. Pellegrin and H. Mellor, “Actin stress fibres,” J. Cell Sci. 120(20), 3491–3499 (2007). [CrossRef] [PubMed]
  54. J. Bailey and D. Gingell, “Contacts of chick fibroblasts on glass: results and limitations of quantitative interferometry,” J. Cell Sci. 90(2), 215–224 (1988). [PubMed]
  55. J. R. Mourant, T. M. Johnson, and J. P. Freyer, “Characterizing mammalian cells and cell phantoms by polarized backscattering fiber-optic measurements,” Appl. Opt. 40(28), 5114–5123 (2001). [CrossRef]
  56. J. M. Schmitt and G. Kumar , “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37(13), 2788–2797 (1998). [CrossRef]
  57. M. Rueckel and W. Denk, “Properties of coherence-gated wavefront sensing,” J. Opt. Soc. Am. A 24(11), 3517–3529 (2007). [CrossRef]
  58. G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Nat. Acad. Sci. U.S.A. 106(9), 3125–3130 (2009). [CrossRef]
  59. P. Kanchanawong, G. Shtengel, A. M. G. Pasapera, E. B Ramko, M. W. Davidson, H. F. Hess, and C. M. Waterman, “Nanoscale architecture of integrin-based cell adhesions,” Nature 468(7323), 580–584 (2010). [CrossRef] [PubMed]
  60. M. B. Steketee and K. W. Tosney, “Three functionally distinct adhesions in filopodia: shaft adhesions control Lamellar extension,” J. Neurol. 22(18), 8071–8083 (2002).
  61. A. Mallavarapu and T. J. Mitchison, “Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction,” Cell Biol. 146(5), 1097–1106 (1999). [CrossRef]
  62. C. Le Clainche and M. F. Carlier, “Regulation of actin assembly associated with protrusion and adhesion in cell migration,” Physiol. Rev. 88(2), 489–513 (2008). [CrossRef] [PubMed]
  63. B. Geiger, J. P. Spatz, and A. D. Bershadsky, “Environmental sensing through focal adhesions,” Nat. Rev. Mol. Cell Biol. 10(1), 21–33 (2009). [CrossRef] [PubMed]
  64. P. K. Mattila and P. Lappalainen, “Filopodia: molecular architecture and cellular functions,” Nat. Rev. Mol. Cell Biol. 9, 446–454 (2008). [CrossRef] [PubMed]
  65. A. Zidovska and E. Sackmann, “Brownian Motion of nucleated cell envelopes impedes adhesion,” Phys. Rev. Lett. 96, 048103 (2006). [CrossRef] [PubMed]
  66. E. Atilgan and B. Ovryn, “Nucleation and growth of integrin adhesions,” Biophys. J. 96, 3555–3572 (2009). [CrossRef] [PubMed]
  67. A. A. M. Pierres, D. Benoliel, D. Touchard, and P. Bongrand, “How cells tiptoe on adhesive surfaces before sticking,” Biophys. J. 94, 4114–4122 (2008). [CrossRef] [PubMed]
  68. L. Limozin and K. Sengupta, “Modulation of vesicle adhesion and spreading kinetics by Hyaluronan cushions,” Biophys. J. 93, 3300–3313 (2007). [CrossRef] [PubMed]
  69. A. Boulbitch, Z. Guttenberg, and E. Sackmann, “Kinetics of membrane adhesion mediated by Ligand-receptor interaction studied with a biomimetic system,” Biophys. J. 81, 2743–2751 (2007). [CrossRef]
  70. J. O. Radler, T. J. Feder, H. H. Strey, and E. Sackmann, “Fluctuation analysis of tension-controlled undulation forces between giant vesicles and solid substrates,” Phys. Rev. E 51, 4526–4536 (1995). [CrossRef]
  71. D. Zuckerman and R. Bruinsma, “Vesicle-vesicle adhesion by mobile lock-and-key molecules: Debye-Huckel theory and Monte Carlo simulation,” Phys. Rev. E 57, 964–977 (1998). [CrossRef]
  72. A. S. Smith, K. Sengupta, S. Goennenwein, U. Seifert, and E. Sackmann, “Force-induced growth of adhesion domains is controlled by receptor mobility,” Proc. Nat. Acad. Sci. U.S.A. 105, 6906–6911 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited