OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 9 — Sep. 1, 2011
  • pp: 2449–2460

High-resolution reconstruction of fluorescent inclusions in mouse thorax using anatomically guided sampling and parallel Monte Carlo computing

Xiaofeng Zhang, Cristian Badea, Greg Hood, Arthur Wetzel, Yi Qi, Joel Stiles, and G. Allan Johnson  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 9, pp. 2449-2460 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2074 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a method for high-resolution reconstruction of fluorescent images of the mouse thorax. It features an anatomically guided sampling method to retrospectively eliminate problematic data and a parallel Monte Carlo software package to compute the Jacobian matrix for the inverse problem. The proposed method was capable of resolving microliter-sized femtomole amount of quantum dot inclusions closely located in the middle of the mouse thorax. The reconstruction was verified against co-registered micro-CT data. Using the proposed method, the new system achieved significantly higher resolution and sensitivity compared to our previous system consisting of the same hardware. This method can be applied to any system utilizing similar imaging principles to improve imaging performance.

© 2011 OSA

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(110.0113) Imaging systems : Imaging through turbid media

ToC Category:
Image Reconstruction and Inverse Problems

Original Manuscript: May 23, 2011
Revised Manuscript: July 25, 2011
Manuscript Accepted: July 28, 2011
Published: July 29, 2011

Xiaofeng Zhang, Cristian Badea, Greg Hood, Arthur Wetzel, Yi Qi, Joel Stiles, and G. Allan Johnson, "High-resolution reconstruction of fluorescent inclusions in mouse thorax using anatomically guided sampling and parallel Monte Carlo computing," Biomed. Opt. Express 2, 2449-2460 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Montet, V. Ntziachristos, J. Grimm, and R. Weissleder, “Tomographic fluorescence mapping of tumor targets,” Cancer Res. 65(14), 6330–6336 (2005). [CrossRef] [PubMed]
  2. S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, “Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice,” J. Biomed. Opt. 10(5), 054003 (2005). [CrossRef] [PubMed]
  3. A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008). [CrossRef] [PubMed]
  4. V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26(12), 893–895 (2001). [CrossRef] [PubMed]
  5. M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol. 54(8), 2493–2509 (2009). [CrossRef] [PubMed]
  6. A. Zhang, D. Piao, C. F. Bunting, and B. W. Pogue, “Photon diffusion in a homogeneous medium bounded externally or internally by an infinitely long circular cylindrical applicator. I. Steady-state theory,” J. Opt. Soc. Am. A 27(3), 648–662 (2010). [CrossRef] [PubMed]
  7. R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Noncontact optical tomography of turbid media,” Opt. Lett. 28(18), 1701–1703 (2003). [CrossRef] [PubMed]
  8. G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, “Complete-angle projection diffuse optical tomography by use of early photons,” Opt. Lett. 30(4), 409–411 (2005). [CrossRef] [PubMed]
  9. S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42(5), 841–853 (1997). [CrossRef] [PubMed]
  10. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005). [CrossRef] [PubMed]
  11. D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(Suppl 1), S275–S288 (2004). [CrossRef] [PubMed]
  12. D. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10(3), 159–170 (2002). [PubMed]
  13. G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062–1071 (2006). [CrossRef] [PubMed]
  14. T. Pan, J. C. Rasmussen, J. H. Lee, and E. M. Sevick-Muraca, “Monte Carlo simulation of time-dependent, transport-limited fluorescent boundary measurements in frequency domain,” Med. Phys. 34(4), 1298–1311 (2007). [CrossRef] [PubMed]
  15. X. Zhang, V. Toronov, and A. Webb, “Simultaneous integrated diffuse optical tomography and functional magnetic resonance imaging of the human brain,” Opt. Express 13(14), 5513–5521 (2005). [CrossRef] [PubMed]
  16. N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett. 32(4), 382–384 (2007). [CrossRef] [PubMed]
  17. Z. M. Wang, G. Y. Panasyuk, V. A. Markel, and J. C. Schotland, “Experimental demonstration of an analytic method for image reconstruction in optical diffusion tomography with large data sets,” Opt. Lett. 30(24), 3338–3340 (2005). [CrossRef] [PubMed]
  18. G. Y. Panasyuk, Z. M. Wang, J. C. Schotland, and V. A. Markel, “Fluorescent optical tomography with large data sets,” Opt. Lett. 33(15), 1744–1746 (2008). [CrossRef] [PubMed]
  19. J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: A singular-value analysis,” Opt. Lett. 26(10), 701–703 (2001). [CrossRef] [PubMed]
  20. H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8(1), 102–110 (2003). [CrossRef] [PubMed]
  21. X. Zhang and C. Badea, “Effects of sampling strategy on image quality in noncontact panoramic fluorescence diffuse optical tomography for small animal imaging,” Opt. Express 17(7), 5125–5138 (2009). [CrossRef] [PubMed]
  22. B. W. Pogue and K. D. Paulsen, “High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information,” Opt. Lett. 23(21), 1716–1718 (1998). [CrossRef] [PubMed]
  23. X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49(12), N155–N163 (2004). [CrossRef] [PubMed]
  24. Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52(18), 5569–5585 (2007). [CrossRef] [PubMed]
  25. X. Zhang, C. T. Badea, and G. A. Johnson, “Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy,” J. Biomed. Opt. 14(6), 064010 (2009). [CrossRef] [PubMed]
  26. D. Hyde, R. Schulz, D. Brooks, E. Miller, and V. Ntziachristos, “Performance dependence of hybrid x-ray computed tomography/fluorescence molecular tomography on the optical forward problem,” J. Opt. Soc. Am. A 26(4), 919–923 (2009). [CrossRef] [PubMed]
  27. B. Ballou, B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, and A. S. Waggoner, “Noninvasive imaging of quantum dots in mice,” Bioconjug. Chem. 15(1), 79–86 (2004). [CrossRef] [PubMed]
  28. N. Y. Morgan, S. English, W. Chen, V. Chernomordik, A. Russo, P. D. Smith, and A. Gandjbakhche, “Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots,” Acad. Radiol. 12(3), 313–323 (2005). [CrossRef] [PubMed]
  29. I. Texier and V. Josser, “In vivo imaging of quantum dots,” Methods Mol. Biol. 544, 393–406 (2009). [CrossRef] [PubMed]
  30. C. Badea, S. Johnston, B. Johnson, M. Lin, L. Hedlund, and G. Johnson, “Dual micro-CT system for small animal imaging,” Proc. SPIE 6913, 691342 (2008).
  31. L. Feldkamp, L. Davis, and J. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. 1(6), 612–619 (1984). [CrossRef]
  32. S. M. Johnston, G. A. Johnson, and C. T. Badea, “Geometric calibration for a dual tube/detector micro-CT system,” Med. Phys. 35(5), 1820–1829 (2008). [CrossRef] [PubMed]
  33. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005). [CrossRef] [PubMed]
  34. X. Zhang, V. Y. Toronov, and A. G. Webb, “An integrated measurement system for simultaneous functional magnetic resonance imaging and diffuse optical tomography in human brain mapping,” Rev. Sci. Instrum. 77(11), 114301 (2006). [CrossRef] [PubMed]
  35. L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007). [CrossRef] [PubMed]
  36. Y. Lin, H. Yan, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography with functional and structural a priori information,” Appl. Opt. 48(7), 1328–1336 (2009). [CrossRef] [PubMed]
  37. Y. Tan and H. Jiang, “DOT guided fluorescence molecular tomography of arbitrarily shaped objects,” Med. Phys. 35(12), 5703–5707 (2008). [CrossRef] [PubMed]
  38. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009). [CrossRef] [PubMed]
  39. E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13(6), 060504 (2008). [CrossRef] [PubMed]
  40. D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46(10), 1669–1678 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited