OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 9 — Sep. 1, 2011
  • pp: 2493–2503

Automated segmentation of outer retinal layers in macular OCT images of patients with retinitis pigmentosa

Qi Yang, Charles A. Reisman, Kinpui Chan, Rithambara Ramachandran, Ali Raza, and Donald C. Hood  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 9, pp. 2493-2503 (2011)
http://dx.doi.org/10.1364/BOE.2.002493


View Full Text Article

Enhanced HTML    Acrobat PDF (2594 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To provide a tool for quantifying the effects of retinitis pigmentosa (RP) seen on spectral domain optical coherence tomography images, an automated layer segmentation algorithm was developed. This algorithm, based on dual-gradient information and a shortest path search strategy, delineates the inner limiting membrane and three outer retinal boundaries in optical coherence tomography images from RP patients. In addition, an automated inner segment (IS)/outer segment (OS) contour detection method based on the segmentation results is proposed to quantify the locus of points at which the OS thickness goes to zero in a 3D volume scan. The segmentation algorithm and the IS/OS contour were validated with manual segmentation data. The segmentation and IS/OS contour results on repeated measures showed good within-day repeatability, while the results on data acquired on average 22.5 months afterward demonstrated a possible means to follow disease progression. In particular, the automatically generated IS/OS contour provided a possible objective structural marker for RP progression.

© 2011 OSA

OCIS Codes
(100.0100) Image processing : Image processing
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Ophthalmology Applications

History
Original Manuscript: June 16, 2011
Revised Manuscript: July 29, 2011
Manuscript Accepted: July 29, 2011
Published: August 1, 2011

Citation
Qi Yang, Charles A. Reisman, Kinpui Chan, Rithambara Ramachandran, Ali Raza, and Donald C. Hood, "Automated segmentation of outer retinal layers in macular OCT images of patients with retinitis pigmentosa," Biomed. Opt. Express 2, 2493-2503 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-9-2493


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaizt, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995). [CrossRef]
  3. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett. 28(19), 1745–1747 (2003). [CrossRef] [PubMed]
  4. W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27(1), 45–88 (2008). [CrossRef] [PubMed]
  5. M. A. Apushkin, G. A. Fishman, K. R. Alexander, and M. Shahidi, “Retinal thickness and visual thresholds measured in patients with retinitis pigmentosa,” Retina 27(3), 349–357 (2007). [CrossRef] [PubMed]
  6. T. S. Aleman, A. V. Cideciyan, A. Sumaroka, E. A. Windsor, W. Herrera, D. A. White, S. Kaushal, A. Naidu, A. J. Roman, S. B. Schwartz, E. M. Stone, and S. G. Jacobson, “Retinal laminar architecture in human retinitis pigmentosa caused by Rhodopsin gene mutations,” Invest. Ophthalmol. Vis. Sci. 49(4), 1580–1590 (2008). [CrossRef] [PubMed]
  7. S. G. Jacobson, T. S. Aleman, A. Sumaroka, A. V. Cideciyan, A. J. Roman, E. A. Windsor, S. B. Schwartz, H. L. Rehm, and W. J. Kimberling, “Disease boundaries in the retina of patients with Usher syndrome caused by MYO7A gene mutations,” Invest. Ophthalmol. Vis. Sci. 50(4), 1886–1894 (2009). [CrossRef] [PubMed]
  8. S. G. Jacobson, A. V. Cideciyan, T. S. Aleman, A. Sumaroka, E. A. Windsor, S. B. Schwartz, E. Heon, and E. M. Stone, “Photoreceptor layer topography in children with leber congenital amaurosis caused by RPE65 mutations,” Invest. Ophthalmol. Vis. Sci. 49(10), 4573–4577 (2008). [CrossRef] [PubMed]
  9. D. C. Hood, C. E. Lin, M. A. Lazow, K. G. Locke, X. Zhang, and D. G. Birch, “Thickness of receptor and post-receptor retinal layers in patients with retinitis pigmentosa measured with frequency-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 50(5), 2328–2336 (2009). [CrossRef] [PubMed]
  10. N. V. Rangaswamy, H. M. Patel, K. G. Locke, D. C. Hood, and D. G. Birch, “A comparison of visual field sensitivity to photoreceptor thickness in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 51(8), 4213–4219 (2010). [CrossRef] [PubMed]
  11. D. C. Hood, M. A. Lazow, K. G. Locke, V. C. Greenstein, and D. G. Birch, “The transition zone between healthy and diseased retina in patients with retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 52(1), 101–108 (2011). [CrossRef] [PubMed]
  12. D. C. Hood, R. Ramachandran, K. Holopigian, M. A. Lazow, D. G. Birch, and V. C. Greenstein, “Method for deriving visual field boundaries from OCT scans of patients with retinitis pigmentosa,” Biomed. Opt. Express 2(5), 1106–1114 (2011). [CrossRef] [PubMed]
  13. Q. Yang, C. A. Reisman, Z. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express 18(20), 21293–21307 (2010). [CrossRef] [PubMed]
  14. D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging 20(9), 900–916 (2001). [CrossRef] [PubMed]
  15. H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005). [CrossRef] [PubMed]
  16. D. Cabrera Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection of retinal layer structures on optical coherence tomography images,” Opt. Express 13(25), 10200–10216 (2005). [CrossRef] [PubMed]
  17. M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Express 13(23), 9480–9491 (2005). [CrossRef] [PubMed]
  18. M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008). [CrossRef] [PubMed]
  19. M. K. Garvin, M. D. Abramoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009). [CrossRef] [PubMed]
  20. T. Fabritius, S. Makita, M. Miura, R. Myllylä, and Y. Yasuno, “Automated segmentation of the macula by optical coherence tomography,” Opt. Express 17(18), 15659–15669 (2009). [CrossRef] [PubMed]
  21. A. Mishra, A. Wong, K. Bizheva, and D. A. Clausi, “Intra-retinal layer segmentation in optical coherence tomography images,” Opt. Express 17(26), 23719–23728 (2009). [CrossRef] [PubMed]
  22. V. Kajić, B. Považay, B. Hermann, B. Hofer, D. Marshall, P. L. Rosin, and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express 18(14), 14730–14744 (2010). [CrossRef] [PubMed]
  23. S. Lu, C. Y.-I Cheung, J. Liu, J. H. Lim, C. K.-s. Leung, and T. Y. Wong, “Automated layer segmentation of optical coherence tomography images,” IEEE Trans. Biomed. Eng. 57(10), 2605–2608 (2010). [CrossRef] [PubMed]
  24. G. Quellec, K. Lee, M. Dolejsi, M. K. Garvin, M. D. Abramoff, and M. Sonka, “Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula,” IEEE Trans. Med. Imaging 29(6), 1321–1330 (2010). [CrossRef] [PubMed]
  25. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010). [CrossRef] [PubMed]
  26. V. Kajić, B. Považay, B. Hermann, B. Hofer, D. Marshall, P. L. Rosin, and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express 18(14), 14730–14744 (2010). [CrossRef] [PubMed]
  27. H. Zhu, D. P. Crabb, P. G. Schlottmann, T. Ho, and D. F. Garway-Heath, “FloatingCanvas: quantification of 3D retinal structures from spectral-domain optical coherence tomography,” Opt. Express 18(24), 24595–24610 (2010). [CrossRef] [PubMed]
  28. A. Yazdanpanah, G. Hamarneh, B. R. Smith, and M. V. Sarunic, “Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach,” IEEE Trans. Med. Imaging 30(2), 484–496 (2011). [CrossRef] [PubMed]
  29. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB (Pearson Prentice Hall, 2004).
  30. D. C. Hood, J. Cho, A. S. Raza, B. A. Dale, and W. Min, “Reliability of a computer-aided manual procedure for segmenting optical coherence tomography scans,” Optom. Vis. Sci. 88, 113–123 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited