OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 9 — Sep. 1, 2011
  • pp: 2540–2550

In vivo three-dimensional spectroscopic photoacoustic imaging for monitoring nanoparticle delivery

Seungsoo Kim, Yun-Sheng Chen, Geoffrey P. Luke, and Stanislav Y. Emelianov  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 9, pp. 2540-2550 (2011)
http://dx.doi.org/10.1364/BOE.2.002540


View Full Text Article

Enhanced HTML    Acrobat PDF (3212 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In vivo monitoring of nanoparticle delivery is essential to better understand cellular and molecular interactions of nanoparticles with tissue and to better plan nanoparticle-mediated therapies. We developed a three-dimensional ultrasound and photoacoustic (PA) imaging system and a spectroscopic PA imaging algorithm to identify and quantify the presence of nanoparticles and other tissue constituents. Using the developed system and approach, three-dimensional in vivo imaging of a mouse with tumor was performed before and after intravenous injection of gold nanorods. The developed spectroscopic PA imaging algorithm estimated distribution of nanoparticle as well as oxygen saturation of blood. Moreover, silver staining of excised tumor tissue confirmed nanoparticle deposition, and showed good correlation with spectroscopic PA images. The results of our study suggest that three-dimensional ultrasound-guided spectroscopic PA imaging can monitor nanoparticle delivery in vivo.

© 2011 OSA

OCIS Codes
(110.7170) Imaging systems : Ultrasound
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5120) Medical optics and biotechnology : Photoacoustic imaging

ToC Category:
Photoacoustic Imaging and Spectroscopy

History
Original Manuscript: May 2, 2011
Revised Manuscript: July 29, 2011
Manuscript Accepted: August 3, 2011
Published: August 5, 2011

Citation
Seungsoo Kim, Yun-Sheng Chen, Geoffrey P. Luke, and Stanislav Y. Emelianov, "In vivo three-dimensional spectroscopic photoacoustic imaging for monitoring nanoparticle delivery," Biomed. Opt. Express 2, 2540-2550 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-9-2540


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009). [CrossRef] [PubMed]
  2. P. C. Li, C. R. Wang, D. B. Shieh, C. W. Wei, C. K. Liao, C. Poe, S. Jhan, A. A. Ding, and Y. N. Wu, “In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods,” Opt. Express 16(23), 18605–18615 (2008). [CrossRef] [PubMed]
  3. C. L. Bayer, Y. S. Chen, S. Kim, S. Mallidi, K. Sokolov, and S. Emelianov, “Multiplex photoacoustic molecular imaging using targeted silica-coated gold nanorods,” Biomed. Opt. Express 2(7), 1828–1835 (2011). [CrossRef] [PubMed]
  4. K. Homan, S. Kim, Y. S. Chen, B. Wang, S. Mallidi, and S. Emelianov, “Prospects of molecular photoacoustic imaging at 1064 nm wavelength,” Opt. Lett. 35(15), 2663–2665 (2010). [CrossRef] [PubMed]
  5. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008). [CrossRef] [PubMed]
  6. Y. S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emelianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 18(9), 8867–8878 (2010). [CrossRef] [PubMed]
  7. Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011). [CrossRef] [PubMed]
  8. R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, and M. Sastry, “Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview,” Langmuir 21(23), 10644–10654 (2005). [CrossRef] [PubMed]
  9. S. Kim, Y.-S. Chen, G. P. Luke, M. Mehrmohammadi, J. R. Cook, and S. Y. Emelianov, “Ultrasound and photoacoustic image-guided photothermal therapy using silica-coated gold nanorods: in-vivo study,” in 2010 IEEE Ultrasonics Symposium (IUS),(IEEE, 2010), pp. 233–236 .
  10. J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008). [CrossRef] [PubMed]
  11. X. Yang, S. E. Skrabalak, Z. Y. Li, Y. Xia, and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent,” Nano Lett. 7(12), 3798–3802 (2007). [CrossRef] [PubMed]
  12. M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008). [CrossRef]
  13. B. Wang, J. L. Su, J. Amirian, S. H. Litovsky, R. Smalling, and S. Emelianov, “Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging,” Opt. Express 18(5), 4889–4897 (2010). [CrossRef] [PubMed]
  14. K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” Eur. J. Radiol. 70(2), 227–231 (2009). [CrossRef] [PubMed]
  15. W. J. Akers, C. Kim, M. Berezin, K. Guo, R. Fuhrhop, G. M. Lanza, G. M. Fischer, E. Daltrozzo, A. Zumbusch, X. Cai, L. V. Wang, and S. Achilefu, “Noninvasive photoacoustic and fluorescence sentinel lymph node identification using dye-loaded perfluorocarbon nanoparticles,” ACS Nano 5(1), 173–182 (2011). [CrossRef] [PubMed]
  16. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003). [CrossRef]
  17. S. A. Prahl, “Optical properties spectra compiled by Scott Prahl,” (retrieved 2009) http://omlc.ogi.edu/spectra/ .
  18. American National Standards Institute, American National Standard for the Safe Use of Lasers, ANSI Z136.1–2000 (ANSI, 2000).
  19. R. A. Mucci, “A comparison of efficient beamforming algorithms,” IEEE Trans. Acoust. Speech Signal Process. 32(3), 548–558 (1984). [CrossRef]
  20. A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt. 36(1), 402–415 (1997). [CrossRef] [PubMed]
  21. W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE Quantum Electronics26, 2166–2185 (1993).
  22. Ref. [21] updated by W.-F. Cheong, further additions by L.V. Wang and S.L. Jacques, http://omlc.ogi.edu/pubs/pdf/cheong90a.pdf .
  23. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995). [CrossRef] [PubMed]
  24. L. Wang, S. L. Jacques, and L. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54(3), 141–150 (1997). [CrossRef] [PubMed]
  25. S. Mallidi, T. Larson, J. Aaron, K. Sokolov, and S. Emelianov, “Molecular specific optoacoustic imaging with plasmonic nanoparticles,” Opt. Express 15(11), 6583–6588 (2007). [CrossRef] [PubMed]
  26. B. Wang, E. Yantsen, T. Larson, A. B. Karpiouk, S. Sethuraman, J. L. Su, K. Sokolov, and S. Y. Emelianov, “Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques,” Nano Lett. 9(6), 2212–2217 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPG (2598 KB)     
» Media 2: MPG (2185 KB)     
» Media 3: MPG (2478 KB)     
» Media 4: MPG (2245 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited