OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 9 — Sep. 1, 2011
  • pp: 2562–2568

Inner retinal metabolic rate of oxygen by oxygen tension and blood flow imaging in rat

Justin Wanek, Pang-yu Teng, John Albers, Norman P. Blair, and Mahnaz Shahidi  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 9, pp. 2562-2568 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1013 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The metabolic function of inner retinal cells relies on the availability of nutrients and oxygen that are supplied by the retinal circulation. Assessment of retinal tissue vitality and function requires knowledge of both the rate of oxygen delivery and consumption. The purpose of the current study is to report a novel technique for assessment of the inner retinal metabolic rate of oxygen (MO2) by combined measurements of retinal blood flow and vascular oxygen tension (PO2) in rat. The application of this technology has the potential to broaden knowledge of retinal oxygen dynamics and advance understanding of disease pathophysiology.

© 2011 OSA

OCIS Codes
(100.2960) Image processing : Image analysis
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Functional Imaging

Original Manuscript: June 24, 2011
Revised Manuscript: July 29, 2011
Manuscript Accepted: July 29, 2011
Published: August 9, 2011

Justin Wanek, Pang-yu Teng, John Albers, Norman P. Blair, and Mahnaz Shahidi, "Inner retinal metabolic rate of oxygen by oxygen tension and blood flow imaging in rat," Biomed. Opt. Express 2, 2562-2568 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Yoneya, T. Saito, Y. Nishiyama, T. Deguchi, M. Takasu, T. Gil, and E. Horn, “Retinal oxygen saturation levels in patients with central retinal vein occlusion,” Ophthalmology 109(8), 1521–1526 (2002). [CrossRef] [PubMed]
  2. W. Zhang, Y. Ito, E. Berlin, R. Roberts, and B. A. Berkowitz, “Role of hypoxia during normal retinal vessel development and in experimental retinopathy of prematurity,” Invest. Ophthalmol. Vis. Sci. 44(7), 3119–3123 (2003). [CrossRef] [PubMed]
  3. M. Mozaffarieh, M. C. Grieshaber, and J. Flammer, “Oxygen and blood flow: players in the pathogenesis of glaucoma,” Mol. Vis. 14, 224–233 (2008). [PubMed]
  4. E. Stefansson, “Oxygen and diabetic eye disease,” Graefes Arch. Clin. Exp. Ophthalmol. 228(2), 120–123 (1990). [CrossRef] [PubMed]
  5. S. J. Cringle, D. Y. Yu, P. K. Yu, and E. N. Su, “Intraretinal oxygen consumption in the rat in vivo,” Invest. Ophthalmol. Vis. Sci. 43(6), 1922–1927 (2002). [PubMed]
  6. V. A. Alder, J. Ben-Nun, and S. J. Cringle, “PO2 profiles and oxygen consumption in cat retina with an occluded retinal circulation,” Invest. Ophthalmol. Vis. Sci. 31(6), 1029–1034 (1990). [PubMed]
  7. R. D. Braun, R. A. Linsenmeier, and T. K. Goldstick, “Oxygen consumption in the inner and outer retina of the cat,” Invest. Ophthalmol. Vis. Sci. 36(3), 542–554 (1995). [PubMed]
  8. D. Y. Yu, S. J. Cringle, P. K. Yu, and E. N. Su, “Intraretinal oxygen distribution and consumption during retinal artery occlusion and graded hyperoxic ventilation in the rat,” Invest. Ophthalmol. Vis. Sci. 48(5), 2290–2296 (2007). [CrossRef] [PubMed]
  9. Y. Ito and B. A. Berkowitz, “MR studies of retinal oxygenation,” Vision Res. 41(10-11), 1307–1311 (2001). [CrossRef] [PubMed]
  10. Y. Zhang, Q. Peng, J. W. Kiel, C. A. Rosende, and T. Q. Duong, “Magnetic resonance imaging of vascular oxygenation changes during hyperoxia and carbogen challenges in the human retina,” Invest. Ophthalmol. Vis. Sci. 52(1), 286–291 (2011). [CrossRef] [PubMed]
  11. S. D. Wajer, M. Taomoto, D. S. McLeod, R. L. McCally, H. Nishiwaki, M. E. Fabry, R. L. Nagel, and G. A. Lutty, “Velocity measurements of normal and sickle red blood cells in the rat retinal and choroidal vasculatures,” Microvasc. Res. 60(3), 281–293 (2000). [CrossRef] [PubMed]
  12. R. Tadayoni, M. Paques, A. Gaudric, and E. Vicaut, “Erythrocyte and leukocyte dynamics in the retinal capillaries of diabetic mice,” Exp. Eye Res. 77(4), 497–504 (2003). [CrossRef] [PubMed]
  13. W. S. Wright, J. E. Messina, and N. R. Harris, “Attenuation of diabetes-induced retinal vasoconstriction by a thromboxane receptor antagonist,” Exp. Eye Res. 88(1), 106–112 (2009). [CrossRef] [PubMed]
  14. L. Wang, C. Grant, B. Fortune, and G. A. Cioffi, “Retinal and choroidal vasoreactivity to altered PaCO2 in rat measured with a modified microsphere technique,” Exp. Eye Res. 86(6), 908–913 (2008). [CrossRef] [PubMed]
  15. J. E. Grunwald, C. E. Riva, S. H. Sinclair, A. J. Brucker, and B. L. Petrig, “Laser Doppler velocimetry study of retinal circulation in diabetes mellitus,” Arch. Ophthalmol. 104(7), 991–996 (1986). [PubMed]
  16. M. H. Cuypers, J. S. Kasanardjo, and B. C. Polak, “Retinal blood flow changes in diabetic retinopathy measured with the Heidelberg scanning laser Doppler flowmeter,” Graefes Arch. Clin. Exp. Ophthalmol. 238(12), 935–941 (2000). [CrossRef] [PubMed]
  17. Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol. 93(5), 634–637 (2009). [CrossRef] [PubMed]
  18. M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint spectral and time domain optical coherence tomography,” Opt. Express 17(16), 14281–14297 (2009). [CrossRef] [PubMed]
  19. J. Sebag, F. C. Delori, G. T. Feke, and J. J. Weiter, “Effects of optic atrophy on retinal blood flow and oxygen saturation in humans,” Arch. Ophthalmol. 107(2), 222–226 (1989). [PubMed]
  20. T. Liu, Q. Wei, J. Wang, S. Jiao, and H. F. Zhang, “Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen,” Biomed. Opt. Express 2(5), 1359–1365 (2011). [CrossRef] [PubMed]
  21. V. Jain, M. C. Langham, and F. W. Wehrli, “MRI estimation of global brain oxygen consumption rate,” J. Cereb. Blood Flow Metab. 30(9), 1598–1607 (2010). [CrossRef] [PubMed]
  22. R. M. Berne and M. N. Levy, Physiology, 2nd ed. (Mosby, St. Louis, MO, 1988).
  23. M. Shahidi, J. Wanek, N. P. Blair, and M. Mori, “Three-dimensional mapping of chorioretinal vascular oxygen tension in the rat,” Invest. Ophthalmol. Vis. Sci. 50(2), 820–825 (2009). [CrossRef] [PubMed]
  24. M. Shahidi, A. Shakoor, N. P. Blair, M. Mori, and R. Shonat, “A method for chorioretinal oxygen tension measurement,” Curr. Eye Res. 31(4), 357–366 (2006). [CrossRef] [PubMed]
  25. B. A. Shapiro, W. T. Perruzi, and R. Kozelowski-Templin, in Clinical Application of Blood Gases (Mosby-Year Book, Inc, St. Louis, 1994), pp. 33–53.
  26. J. B. West, Pulmonary Physiology and Pathophysiology: an Integrated, Case-Based Approach, 2nd ed. (Lippincott Williams & Wilkins, Philadelphia, PA, 2007).
  27. C. F. Cartheuser, “Standard and pH-affected hemoglobin-O2 binding curves of Sprague-Dawley rats under normal and shifted P50 conditions,” Comp. Biochem. Physiol. Comp. Physiol. 106(4), 775–782 (1993). [CrossRef] [PubMed]
  28. K. Lorentz, A. Zayas-Santiago, S. Tummala, and J. J. Kang Derwent, “Scanning laser ophthalmoscope-particle tracking method to assess blood velocity during hypoxia and hyperoxia,” Adv. Exp. Med. Biol. 614, 253–261 (2008). [CrossRef] [PubMed]
  29. M. Shahidi, J. Wanek, B. Gaynes, and T. Wu, “Quantitative assessment of conjunctival microvascular circulation of the human eye,” Microvasc. Res. 79(2), 109–113 (2010). [CrossRef] [PubMed]
  30. S. L. Meyer, in Data Analysis for Scientists and Engineers (Wiley, New York, 1975), pp. 39–48.
  31. H. Nishiwaki, Y. Ogura, H. Kimura, J. Kiryu, K. Miyamoto, and N. Matsuda, “Visualization and quantitative analysis of leukocyte dynamics in retinal microcirculation of rats,” Invest. Ophthalmol. Vis. Sci. 37(7), 1341–1347 (1996). [PubMed]
  32. K. Yamakawa, I. A. Bhutto, Z. Lu, Y. Watanabe, and T. Amemiya, “Retinal vascular changes in rats with inherited hypercholesterolemia—corrosion cast demonstration,” Curr. Eye Res. 22(4), 258–265 (2001). [CrossRef] [PubMed]
  33. D. Y. Yu, S. J. Cringle, V. A. Alder, and E. N. Su, “Intraretinal oxygen distribution in rats as a function of systemic blood pressure,” Am. J. Physiol. 267(6 Pt 2), H2498–H2507 (1994). [PubMed]
  34. J. Brotherton, “Studies on the metabolism of the rat retina with special reference to retinitis pigmentosa. I. Anaerobic glycolysis,” Exp. Eye Res. 1(3), 234–245 (1962). [CrossRef] [PubMed]
  35. P. Törnquist and A. Alm, “Retinal and choroidal contribution to retinal metabolism in vivo. A study in pigs,” Acta Physiol. Scand. 106(3), 351–357 (1979). [CrossRef] [PubMed]
  36. L. Wang, P. Törnquist, and A. Bill, “Glucose metabolism of the inner retina in pigs in darkness and light,” Acta Physiol. Scand. 160(1), 71–74 (1997). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited