OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 9 — Sep. 1, 2011
  • pp: 2569–2576

Ellipsometry study on gold-nanoparticle-coated gold thin film for biosensing application

Rakesh Singh Moirangthem, Yia-Chung Chang, and Pei-Kuen Wei  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 9, pp. 2569-2576 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2524 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The amplified plasmonic response from various distributions of gold nanoparticles (AuNPs) coated on top of gold thin film was studied via ellipsometry under total internal reflection mode. The surface plasmon resonance dip can be tuned from the visible to near infrared by simply varying the AuNP concentration. Theoretical modeling based on effective medium theory with a multi-slice model has been employed to fit the experimental results. Additionally, this experimental tool has been further extended to study bio-molecular interactions with metal surfaces as well as in studying protein-protein interaction without any labeling. Hence, this technique could provide a non-destructive way of designing tunable label-free optical biosensors with very high sensitivity.

© 2011 OSA

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(120.3940) Instrumentation, measurement, and metrology : Metrology
(240.6680) Optics at surfaces : Surface plasmons
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Biosensors and Molecular Diagnostics

Original Manuscript: July 11, 2011
Revised Manuscript: August 8, 2011
Manuscript Accepted: August 8, 2011
Published: August 10, 2011

Rakesh Singh Moirangthem, Yia-Chung Chang, and Pei-Kuen Wei, "Ellipsometry study on gold-nanoparticle-coated gold thin film for biosensing application," Biomed. Opt. Express 2, 2569-2576 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008). [CrossRef] [PubMed]
  2. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003). [CrossRef] [PubMed]
  3. H. Arwin, “Ellipsometry on thin organic layers of biological interest: characterization and applications,” Thin Solid Films 377–378(1-2), 48–56 (2000). [CrossRef]
  4. M. Poksinski and H. Arwin, “Protein monolayers monitored by internal reflection ellipsometry,” Thin Solid Films 455–456, 716–721 (2004). [CrossRef]
  5. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999). [CrossRef]
  6. S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonace sensor based on phase detection,” Sens. Actuators B Chem. 35(1-3), 187–191 (1996). [CrossRef]
  7. I. R. Hooper and J. R. Sambles, “Sensing using differential surface plasmon ellipsometry,” J. Appl. Phys. 96(5), 3004–3011 (2004). [CrossRef]
  8. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000). [CrossRef]
  9. L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70(24), 5177–5183 (1998). [CrossRef] [PubMed]
  10. K. Tamada, F. Nakamura, M. Ito, M. X. Li, and A. Baba, “SPR-based DNA detection with metal nanoparticles,” Plasmonics 2(4), 185–191 (2007). [CrossRef]
  11. W. C. Law, K. T. Yong, A. Baev, R. Hu, and P. N. Prasad, “Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods,” Opt. Express 17(21), 19041–19046 (2009). [CrossRef] [PubMed]
  12. J. Jung, K. Na, J. Lee, K. W. Kim, and J. Hyun, “Enhanced surface plasmon resonance by Au nanoparticles immobilized on a dielectric SiO2 layer on a gold surface,” Anal. Chim. Acta 651(1), 91–97 (2009). [CrossRef] [PubMed]
  13. R. S. Moirangthem, Y. C. Chang, S. H. Hsu, and P. K. Wei, “Surface plasmon resonance ellipsometry based sensor for studying biomolecular interaction,” Biosens. Bioelectron. 25(12), 2633–2638 (2010). [CrossRef] [PubMed]
  14. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416(7), 636–664 (1935). [CrossRef]
  15. S. H. Hsu, Y. C. Chang, Y. C. Chen, P. K. Wei, and Y. D. Kim, “Optical metrology of randomly-distributed Au colloids on a multilayer film,” Opt. Express 18(2), 1310–1315 (2010). [CrossRef] [PubMed]
  16. G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci (Lond.) 241, 20–22 (1973).
  17. J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering,” J. Phys. Chem. B 110(35), 17444–17451 (2006). [CrossRef] [PubMed]
  18. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).
  19. H. Arwin, M. Poksinski, and K. Johansen, “Total internal reflection ellipsometry: principles and applications,” Appl. Opt. 43(15), 3028–3036 (2004). [CrossRef] [PubMed]
  20. P. Westphal and A. Bornmann, “Biomolecular detection by surface plasmon enhanced ellipsometry,” Sens. Actuators B Chem. 84(2–3), 278–282 (2002). [CrossRef]
  21. J. Y. Lee, T. K. Chou, and H. C. Shih, “Polarization-interferometric surface-plasmon-resonance imaging system,” Opt. Lett. 33(5), 434–436 (2008). [CrossRef] [PubMed]
  22. W. Y. Yong, J. Y. Jae, D. K. Young, and W. Deokha, “Study of the interaction between biomolecule monolayers using total internal reflection ellipsometry,” J. Kor. Phys. Soc. 58(42), 1031–1034 (2011). [CrossRef]
  23. A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of the synthetic and biopolymers at the air-water interface,” Biopolymers 17(7), 1759–1772 (1978). [CrossRef]
  24. P. A. Cuypers, W. T. H. Hermens, and H. C. Hemker, “Ellipsometry as a tool to study protein films at liquid-solid interfaces,” Anal. Biochem. 84(1), 56–67 (1978). [CrossRef] [PubMed]
  25. H. Arwin, “Optical properties of thin layers of bovine serum albumin, v-globulin, and hemoglobin,” Appl. Spectrosc. 40(3), 313–318 (1986). [CrossRef]
  26. N. Watanabe, T. Shirakawa, M. Iwahashi, K. Ohbu, and T. Seimiya, “Effect of surface charge on adsorption of bovine serum albumin as studied by ellipsometry 1. Adsorption on cationic monolayer,” Colloid Polym. Sci. 264(10), 903–908 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited