OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 9 — Sep. 1, 2011
  • pp: 2590–2599

Holographic UV laser microsurgery

Aroshan K Jayasinghe, Jason Rohner, and M Shane Hutson  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 9, pp. 2590-2599 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1026 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use a spatial light modulator (SLM) to diffract a single UV laser pulse to ablate multiple points on a Drosophila embryo. This system dynamically generates a phase hologram for ablating a user-defined pattern fast enough to be used with living, and thus moving, tissue. We demonstrate the ability of this single-pulse multi-point system to perform two experiments that are very difficult for conventional microsurgery—isolating single cells in vivo and measuring fast retractions from large incisions.

© 2011 OSA

OCIS Codes
(170.1020) Medical optics and biotechnology : Ablation of tissue
(090.1995) Holography : Digital holography
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Optical Therapies and Photomodificaton

Original Manuscript: July 1, 2011
Revised Manuscript: August 9, 2011
Manuscript Accepted: August 9, 2011
Published: August 15, 2011

Aroshan K Jayasinghe, Jason Rohner, and M Shane Hutson, "Holographic UV laser microsurgery," Biomed. Opt. Express 2, 2590-2599 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Toyama, X. G. Peralta, A. R. Wells, D. P. Kiehart, and G. S. Edwards, “Apoptotic force and tissue dynamics during Drosophila embryogenesis,” Science 321(5896), 1683–1686 (2008). [CrossRef] [PubMed]
  2. M. S. Hutson, Y. Tokutake, M. S. Chang, J. W. Bloor, S. Venakides, D. P. Kiehart, and G. S. Edwards, “Forces for morphogenesis investigated with laser microsurgery and quantitative modeling,” Science 300(5616), 145–149 (2003). [CrossRef] [PubMed]
  3. X. Ma, H. E. Lynch, P. C. Scully, and M. S. Hutson, “Probing embryonic tissue mechanics with laser hole drilling,” Phys. Biol. 6(3), 036004 (2009). [CrossRef] [PubMed]
  4. D. P. Kiehart, C. G. Galbraith, K. A. Edwards, W. L. Rickoll, and R. A. Montague, “Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila,” J. Cell Biol. 149(2), 471–490 (2000). [CrossRef] [PubMed]
  5. X. G. Peralta, Y. Toyama, M. S. Hutson, R. Montague, S. Venakides, D. P. Kiehart, and G. S. Edwards, “Upregulation of forces and morphogenic asymmetries in dorsal closure during Drosophila development,” Biophys. J. 92(7), 2583–2596 (2007). [CrossRef] [PubMed]
  6. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810 (2001). [CrossRef]
  7. E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974 (1998). [CrossRef]
  8. J. Colombelli, E. G. Reynaud, and E. H. K. Stelzer, “Investigating relaxation processes in cells and developing organisms: from cell ablation to cytoskeleton nanosurgery,” Methods Cell Biol. 82, 267–291 (2007). [CrossRef] [PubMed]
  9. M. S. Hutson and X. Ma, “Plasma and cavitation dynamics during pulsed laser microsurgery in vivo,” Phys. Rev. Lett. 99(15), 158104 (2007). [CrossRef] [PubMed]
  10. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003). [CrossRef] [PubMed]
  11. V. Venugopalan, A. Guerra, K. Nahen, and A. Vogel, “Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88(7), 078103 (2002). [CrossRef] [PubMed]
  12. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005). [CrossRef]
  13. K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1), 016308 (2010). [CrossRef] [PubMed]
  14. P. A. Quinto-Su, V. Venugopalan, and C.-D. Ohl, “Generation of laser-induced cavitation bubbles with a digital hologram,” Opt. Express 16(23), 18964–18969 (2008). [CrossRef] [PubMed]
  15. A. Mao, “Holographic modulation of a pulsed UV laser microbeam for biophysical investigations of tissue dynamics,” Senior Thesis (Free Electron Laser Laboratory, Duke University, 2004).
  16. E. Fällman and O. Axner, “Design for fully steerable dual-trap optical tweezers,” Appl. Opt. 36(10), 2107–2113 (1997). [CrossRef] [PubMed]
  17. D. P. Kiehart, Y. Tokutake, M. S. Chang, M. S. Hutson, J. Wiemann, X. G. Peralta, Y. Toyama, A. R. Wells, A. Rodriguez, and G. S. Edwards, “Ultraviolet laser microbeam for dissection of Drosophila embryos,” in Cell Biology: A Laboratory Handbook, 3rd ed., J. E. Celis, ed. (Elsevier Academic, 2006), pp. 87–103.
  18. Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Opt. Rev. 6(4), 339–344 (1999). [CrossRef]
  19. E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers set-ups,” J. Opt. A, Pure Appl. Opt. 9(8), S267–S277 (2007). [CrossRef]
  20. G. C. Spalding, J. Courtial, and R. Di Leonardo, “Holographic optical tweezers,” in Structured Light and Its Applications an Introduction to Phase-Structured Beams and Nanoscale Optical Forces, D. Andrews, ed. (Academic Press, 2008), pp. 139–157.
  21. R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15(4), 1913–1922 (2007). [CrossRef] [PubMed]
  22. M. Montes-Usategui, E. Pleguezuelos, J. Andilla, and E. Martín-Badosa, “Fast generation of holographic optical tweezers by random mask encoding of Fourier components,” Opt. Express 14(6), 2101–2107 (2006). [CrossRef] [PubMed]
  23. H. Oda and S. Tsukita, “Real-time imaging of cell-cell adherens junctions reveals that Drosophila mesoderm invagination begins with two phases of apical constriction of cells,” J. Cell Sci. 114(Pt 3), 493–501 (2001). [PubMed]
  24. LordRayleigh, “On the pressure developed in a liquid during the collapse of a spherical cavity,” Philos. Mag. 1917, 34 (1917).
  25. J. Campos-Ortega, The Embryonic Development of Drosophila melanogaster, 2nd ed. (Springer, 1997).
  26. M. S. Hutson, J. Veldhuis, X. Ma, H. E. Lynch, P. G. Cranston, and G. W. Brodland, “Combining laser microsurgery and finite element modeling to assess cell-level epithelial mechanics,” Biophys. J. 97(12), 3075–3085 (2009). [CrossRef] [PubMed]
  27. J. Colombelli, E. G. Reynaud, J. Rietdorf, R. Pepperkok, and E. H. K. Stelzer, “In vivo selective cytoskeleton dynamics quantification in interphase cells induced by pulsed ultraviolet laser nanosurgery,” Traffic 6(12), 1093–1102 (2005). [CrossRef] [PubMed]
  28. J. Colombelli, S. W. Grill, and E. H. K. Stelzer, “Ultraviolet diffraction limited nanosurgery of live biological tissues,” Rev. Sci. Instrum. 75(2), 472 (2004). [CrossRef]
  29. J. Solon, A. Kaya-Copur, J. Colombelli, and D. Brunner, “Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure,” Cell 137(7), 1331–1342 (2009). [CrossRef] [PubMed]
  30. M. Rauzi, P. Verant, T. Lecuit, and P.-F. Lenne, “Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis,” Nat. Cell Biol. 10(12), 1401–1410 (2008). [CrossRef] [PubMed]
  31. R. Farhadifar, J.-C. Röper, B. Aigouy, S. Eaton, and F. Jülicher, “The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing,” Curr. Biol. 17(24), 2095–2104 (2007). [CrossRef] [PubMed]
  32. S. Kumar, I. Z. Maxwell, A. Heisterkamp, T. R. Polte, T. P. Lele, M. Salanga, E. Mazur, and D. E. Ingber, “Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics,” Biophys. J. 90(10), 3762–3773 (2006). [CrossRef] [PubMed]
  33. I. Toytman, A. Silbergleit, D. Simanovski, and D. Palanker, “Multifocal laser surgery: cutting enhancement by hydrodynamic interactions between cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(4), 046313 (2010). [CrossRef] [PubMed]
  34. Y. Tomita, A. Shima, and K. Sato, “Dynamic behavior of two-laser-induced bubbles in water,” Appl. Phys. Lett. 57(3), 234 (1990). [CrossRef]
  35. P. A. Quinto-Su and C.-D. Ohl, “Interaction between two laser-induced cavitation bubbles in a quasi-two-dimensional geometry,” J. Fluid Mech. 633, 425 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: AVI (1294 KB)     
» Media 2: AVI (1424 KB)     
» Media 3: AVI (881 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited