OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 9 — Sep. 1, 2011
  • pp: 2599–2613

Artery phantoms for intravascular optical coherence tomography: healthy arteries

Charles-Étienne Bisaillon, Marc L. Dufour, and Guy Lamouche  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 9, pp. 2599-2613 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (960 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a method to make phantoms of coronary arteries for intravascular optical coherence tomography (IV-OCT). The phantoms provide a calibrated OCT response similar to the layered structure of arteries. The optical properties of each layer are achieved with specific concentrations of alumina and carbon black in a silicone matrix. This composition insures high durability and also approximates the elastic properties of arteries. The phantoms are fabricated in a tubular shape by the successive deposition and curing of liquid silicone mixtures on a lathe setup.

© 2011 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Calibration, Validation and Phantom Studies

Original Manuscript: May 2, 2011
Revised Manuscript: August 10, 2011
Manuscript Accepted: August 11, 2011
Published: August 15, 2011

Charles-Étienne Bisaillon, Marc L. Dufour, and Guy Lamouche, "Artery phantoms for intravascular optical coherence tomography: healthy arteries," Biomed. Opt. Express 2, 2599-2613 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. The International Working Group For Intracoronary OCT Standardization and Validation (2009), http://www.octstandardization.org/site/ .
  2. R. J. Nordstrom, “The need for validation standards in medical imaging,” Proc. SPIE 7567, 756702 (2010). [CrossRef]
  3. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006). [CrossRef] [PubMed]
  4. C.-E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J.-P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(13), N237–N247 (2008). [CrossRef] [PubMed]
  5. A. L. Oldenburg, F. J.-J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express 13(17), 6597–6614 (2005). [CrossRef] [PubMed]
  6. A. Grimwood, L. Garcia, J. Bamber, J. Holmes, P. Woolliams, P. Tomlins, and Q. A. Pankhurst, “Elastographic contrast generation in optical coherence tomography from a localized shear stress,” Phys. Med. Biol. 55(18), 5515–5528 (2010). [CrossRef] [PubMed]
  7. P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt. 49(11), 2014–2021 (2010). [CrossRef] [PubMed]
  8. A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett. 35(13), 2269–2271 (2010). [CrossRef] [PubMed]
  9. B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, and D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt. 15(3), 030507 (2010). [CrossRef] [PubMed]
  10. D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010). [CrossRef] [PubMed]
  11. G. Lamouche, M. Dufour, M. Hewko, S. Vergnole, B. Gauthier, C.-E. Bisaillon, J.-P. Monchalin, and M. G. Sowa, “Intravascular optical coherence tomography on a beating heart model,” J. Biomed. Opt. 15(4), 046023 (2010). [CrossRef] [PubMed]
  12. J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32(30), 6032–6042 (1993). [CrossRef] [PubMed]
  13. S. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging 12(4), 613–620 (2003). [CrossRef]
  14. G. Lamouche, M. Dufour, B. Gauthier, V. Bartulovic, M. Hewko, and J. P. Monchalin, “Optical delay line using rotating rhombic prisms,” Proc. SPIE 6429, 64292G (2007). [CrossRef]
  15. V. V. Tuchin, “Tissue phantoms,” in Tissue Optics: Light scattering Methods And Instruments for Medical Diagnosis (SPIE, Bellingham, WA, 2000), pp. 98–108.
  16. R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002). [CrossRef] [PubMed]
  17. Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006). [CrossRef] [PubMed]
  18. J. W. Goodman, Speckle phenomena in optics—Theory and applications (Roberts & Company, Englewood, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited