OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 9 — Sep. 1, 2011
  • pp: 2614–2622

Increasing the field-of-view of dynamic cardiac OCT via post-acquisition mosaicing without affecting frame-rate or spatial resolution

JeaBuem Yoo, Irina V. Larina, Kirill V. Larin, Mary E. Dickinson, and Michael Liebling  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 9, pp. 2614-2622 (2011)
http://dx.doi.org/10.1364/BOE.2.002614


View Full Text Article

Enhanced HTML    Acrobat PDF (1818 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical coherence tomography (OCT) allows imaging dynamic structures and fluid flow within scattering tissue, such as the beating heart and blood flow in murine embryos. For any given system, the frame rate, spatial resolution, field-of-view (FOV), and signal-to-noise ratio (SNR) are interconnected: favoring one aspect limits at least one of the others due to optical, instrumentation, and software constraints. Here we describe a spatio-temporal mosaicing technique to reconstruct high-speed, high spatial-resolution, and large-field-of-view OCT sequences. The technique is applicable to imaging any cyclically moving structure and operates on multiple, spatially overlapping tiled image sequences (each sequence acquired sequentially at a given spatial location) and effectively decouples the (rigid) spatial alignment and (non-rigid) temporal registration problems. Using this approach we reconstructed full-frame OCT sequences of the beating embryonic rat heart (11.5 days post coitus) and compared it to direct imaging on the same system, demonstrating a six-fold improvement of the frame rate without compromising spatial resolution, FOV, or SNR.

© 2011 OSA

OCIS Codes
(100.0100) Image processing : Image processing
(110.4500) Imaging systems : Optical coherence tomography
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(180.1655) Microscopy : Coherence tomography
(110.4155) Imaging systems : Multiframe image processing

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: May 5, 2011
Revised Manuscript: August 3, 2011
Manuscript Accepted: August 5, 2011
Published: August 16, 2011

Citation
JeaBuem Yoo, Irina V. Larina, Kirill V. Larin, Mary E. Dickinson, and Michael Liebling, "Increasing the field-of-view of dynamic cardiac OCT via post-acquisition mosaicing without affecting frame-rate or spatial resolution," Biomed. Opt. Express 2, 2614-2622 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-9-2614


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Yelbuz, M. Choma, L. Thrane, M. Kirby, and J. Izatt, “A new high-resolution imaging technology to study cardiac development in chick embryos,” Circulation 106, 2771–2774 (2002). [CrossRef] [PubMed]
  2. I. V. Larina, E. F. Carbajal, V. V. Tuchin, M. E. Dickinson, and K. V. Larin, “Enhanced OCT imaging of embryonic tissue with optical clearing,” Laser Phys. Lett. 5, 476–479 (2008). [CrossRef]
  3. I. Larina, N. Sudheendran, M. Ghosn, J. Jiang, A. Cable, K. Larin, and M. Dickinson, “Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 13, 060506 (2008). [CrossRef]
  4. I. Larina, S. Ivers, S. Syed, M. Dickinson, and K. Larin, “Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT,” Opt. Lett. 34, 986–988 (2009). [CrossRef] [PubMed]
  5. K. V. Larin, I. V. Larina, M. Liebling, and M. E. Dickinson, “Live imaging of early developmental processes in mammalian embryos with optical coherence tomography,” J. Innov. Opt. Health Sci. 2, 253–259 (2009). [CrossRef] [PubMed]
  6. M. Gargesha, M. W. Jenkins, D. L. Wilson, and A. M. Rollins, “High temporal resolution OCT using image-based retrospective gating,” Opt. Express 17, 10786–10799 (2009). [CrossRef] [PubMed]
  7. A. Liu, R. Wang, K. Thornburg, and S. Rugonyi, “Efficient postacquisition synchronization of 4-D nongated cardiac images obtained from optical coherence tomography: application to 4-D reconstruction of the chick embryonic heart,” J. Biomed. Opt. 14, 044020 (2009). [CrossRef] [PubMed]
  8. T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express 17, 4166–4176 (2009). [CrossRef] [PubMed]
  9. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18, 14685–14704 (2010). [CrossRef] [PubMed]
  10. J. Vermot, S. E. Fraser, and M. Liebling, “Fast fluorescence microscopy for imaging the dynamics of embryonic development,” HFSP J . 2, 143–155 (2008). [CrossRef]
  11. A. Can, C. Stewart, B. Roysam, and H. Tanenbaum, “A feature-based technique for joint, linear estimation of high-order image-to-mosaic transformations: Mosaicing the curved human retina,” IEEE Trans. Pattern Anal. 24, 412–419 (2002). [CrossRef]
  12. P. Thévenaz and M. Unser, “User-friendly semiautomated assembly of accurate image mosaics in microscopy,” Microsc. Res. Tech. 70, 135–146 (2007). [CrossRef]
  13. M. Emmenlauer, O. Ronneberger, A. Ponti, P. Schwarb, A. Griffa, A. Filippi, R. Nitschke, W. Driever, and H. Burkhardt, “XuvTools: free, fast and reliable stitching of large 3D datasets,” J. Microsc. 233, 42–60 (2009). [CrossRef] [PubMed]
  14. J. Zupanc, A. Dobnikar, D. Drobne, J. Valant, D. Erdogmus, and E. Bas, “Biological reactivity of nanoparticles: mosaics from optical microscopy videos of giant lipid vesicles,” J. Biomed. Opt. 16, 026003 (2011). [CrossRef] [PubMed]
  15. H. Sawhney and R. Kumar, “True multi-image alignment and its application to mosaicing and lens distortion correction,” IEEE Trans. Pattern Anal. 21, 235–243 (1999). [CrossRef]
  16. H. Shum and R. Szeliski, “Systems and experiment paper: Construction of panoramic image mosaics with global and local alignment,” Int. J. Comput. Vis. 36, 101–130 (2000). [CrossRef]
  17. M. Liebling, A. S. Forouhar, M. Gharib, S. E. Fraser, and M. E. Dickinson, “Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences,” J. Biomed. Opt. 10, 054001 (2005). [CrossRef] [PubMed]
  18. M. Liebling, A. S. Forouhar, R. Wolleschensky, B. Zimmerman, R. Ankerhold, S. E. Fraser, M. Gharib, and M. E. Dickinson, “Rapid three-dimensional imaging and analysis of the beating embryonic heart reveals functional changes during development,” Dev. Dynam. 235, 2940–2948 (2006). [CrossRef]
  19. P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7, 27–41 (1998). [CrossRef]
  20. M. Liebling, J. Vermot, A. Forouhar, M. Gharib, M. Dickinson, and S. Fraser, “Nonuniform temporal alignment of slice sequences for four-dimensional imaging of cyclically deforming embryonic structures,” in “Proc. ISBI 2006 ,”(2006), pp. 1156–1159.
  21. A. Frangi, D. Rueckert, J. Schnabel, and W. Niessen, “Automatic construction of multiple-object three-dimensional statistical shape models: Application to cardiac modeling,” IEEE Trans. Med. Imaging 21, 1151–1166 (2002). [CrossRef]
  22. D. Perperidis, R. H. Mohiaddin, and D. Rueckert, “Spatio-temporal free-form registration of cardiac MR image sequences,” Med. Image Anal. 9, 441–456 (2005). [CrossRef] [PubMed]
  23. S. Bhat, I. V. Larina, K. V. Larin, M. E. Dickinson, and M. Liebling, “Multiple-cardiac-cycle noise reduction in dynamic optical coherence tomography of the embryonic heart and vasculature,” Opt. Lett. 34, 3704–3706 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

Supplementary Material


» Media 1: MOV (5816 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited