OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 9 — Sep. 1, 2011
  • pp: 2632–2648

Split operator method for fluorescence diffuse optical tomography using anisotropic diffusion regularisation with prior anatomical information

Teresa Correia, Juan Aguirre, Alejandro Sisniega, Judit Chamorro-Servent, Juan Abascal, Juan J. Vaquero, Manuel Desco, Ville Kolehmainen, and Simon Arridge  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 9, pp. 2632-2648 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (3224 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fluorescence diffuse optical tomography (fDOT) is an imaging modality that provides images of the fluorochrome distribution within the object of study. The image reconstruction problem is ill-posed and highly underdetermined and, therefore, regularisation techniques need to be used. In this paper we use a nonlinear anisotropic diffusion regularisation term that incorporates anatomical prior information. We introduce a split operator method that reduces the nonlinear inverse problem to two simpler problems, allowing fast and efficient solution of the fDOT problem. We tested our method using simulated, phantom and ex-vivo mouse data, and found that it provides reconstructions with better spatial localisation and size of fluorochrome inclusions than using the standard Tikhonov penalty term.

© 2011 OSA

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Image Reconstruction and Inverse Problems

Original Manuscript: July 7, 2011
Revised Manuscript: August 14, 2011
Manuscript Accepted: August 15, 2011
Published: August 19, 2011

Teresa Correia, Juan Aguirre, Alejandro Sisniega, Judit Chamorro-Servent, Juan Abascal, Juan J. Vaquero, Manuel Desco, Ville Kolehmainen, and Simon Arridge, "Split operator method for fluorescence diffuse optical tomography using anisotropic diffusion regularisation with prior anatomical information," Biomed. Opt. Express 2, 2632-2648 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Ntziachristos, “Fluorescence molecular imaging,” Ann. Rev. Biomed. Eng.8, 1–33 (2006). [CrossRef]
  2. V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol.13, 195–208 (2003). [PubMed]
  3. G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” Proc. Natl. Acad. Sci. U.S.A.12, 18252–18257 (2005). [CrossRef]
  4. D. S. Kepshire, S. L. Gibbs-Strauss, J. A. OHara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt.14, 030501 (2009). [CrossRef] [PubMed]
  5. A. Martin, J. A. J, A. Sarasa-Renedo, D. Tsoukatou, A. Garofalakis, H. Meyer, C. Mamalaki, J. Ripoll, and A. M. Planas, “Imaging changes in lymphoid organs in vivo after brain ischemia with three-dimensional fluorescence molecular tomography in transgenic mice expressing green fluorescent protein in T lymphocytes.” Molec. Imaging7, 157–167 (2008).
  6. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express15, 6696–6716 (2007). [CrossRef] [PubMed]
  7. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A.97, 2767–2772 (2000). [CrossRef] [PubMed]
  8. S. van de Ven, A. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. V. der Mark, M. V. Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: First clinical experience in patients,” Molec. Imaging Biol.12, 343–248 (2010). [CrossRef]
  9. S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inv. Probl.25, 123010 (2009). [CrossRef]
  10. A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Adaptive finite element based tomography for fluorescence optical imaging in tissue,” Opt. Express12, 5402–5417 (2004). [CrossRef] [PubMed]
  11. A. D. Zacharopoulos, P. Svenmarker, J. Axelsson, M. Schweiger, S. R. Arridge, and S. Andersson-Engels, “A matrix-free algorithm for multiple wavelength fluorescence tomography,” Opt. Express17, 3025–3035 (2009). [CrossRef] [PubMed]
  12. A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys.37, 1976–1986 (2010). [CrossRef] [PubMed]
  13. S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express15, 4066–4082 (2007). [CrossRef] [PubMed]
  14. Y. Lin, H. Yan, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography with functional and structural a priori information,” Appl. Opt.48, 1328–1336 (2009). [CrossRef] [PubMed]
  15. C. R. Vogel, Computational Methods for Inverse Problems (Society for Industrial and Applied Mathematics, 2002). [CrossRef]
  16. M. Freiberger, H. Egger, and H. Scharfetter, “Nonlinear inversion in fluorescence optical tomography,” IEEE Trans. Biomed. Eng.57, 2723–2729 (2010). [CrossRef]
  17. M. Freiberger, C. Clason, and H. Scharfetter, “Total variation regularization for nonlinear fluorescence tomography with an augmented Lagrangian splitting approach,” Appl. Opt.49, 3741–3747 (2010). [CrossRef] [PubMed]
  18. A. Chambolle and P. Lions, “Image recovery via total variation minimization and related problems,” Num. Math.76, 167–188 (1997). [CrossRef]
  19. A. Douiri, M. Schweiger, J. Riley, and S. Arridge, “Local diffusion regularization method for optical tomography reconstruction by using robust statistics,” Opt. Lett.30, 2439–2441 (2005). [CrossRef] [PubMed]
  20. A. Douiri, M. Schweiger, J. Riley, and S. R. Arridge, “Anisotropic diffusion regularization methods for diffuse optical tomography using edge prior information,” Meas. Sci. Technol.18, 87–95 (2007). [CrossRef]
  21. S. R. Arridge, V. Kolehmainen, and M. J. Schweiger, “Reconstruction and regularisation in optical tomography,” in “Interdisciplinary Workshop on Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT),”(Pisa, Italy, 2007), pp. 1–18.
  22. J. P. Kaipio, V. Kolehmainen, M. Vauhkonen, and E. Somersalo, “Inverse problems with structural prior information,” Inv. Probl.15, 713–729 (1999). [CrossRef]
  23. V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett.26, 893–895 (2001). [CrossRef]
  24. M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Optics Letters21, 158–160 (1996). [CrossRef]
  25. A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging24, 1377–1386 (2005). [CrossRef] [PubMed]
  26. T. J. Rudge, V. Y. Soloviev, and S. R. Arridge, “Fast image reconstruction in fluoresence optical tomography using data compression,” Opt. Lett.35, 763–765 (2010). [CrossRef] [PubMed]
  27. F. Catteé, P. Lions, J. Morel, and T. Coll, “Image selective smoothing and edge detection by nonlinear diffusion,” SIAM J. Num. Anal.29, 182–193 (1992). [CrossRef]
  28. P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell.12, 629–639 (1990). [CrossRef]
  29. J. Weickert, B. M. ter Haar Romeny, and M. A. Viergever, “Efficient and reliable schemes for nonlinear diffusion filtering,” IEEE Trans. Image Process.7, 398–410 (1998). [CrossRef]
  30. M. J. Black, G. Sapiro, D. H. Marimont, and D. Heeger, “Robust anisotropic diffusion,” IEEE Trans. Image Process.7, 421–432 (1998). [CrossRef]
  31. M. Schweiger, S. R. Arridge, and I. Nissilä, “Gauss-Newton method for image reconstruction in diffuse optical tomography,” Phys. Med. Biol.50, 2365–2386 (2005). [CrossRef] [PubMed]
  32. H. W. Engl, M. Hanke, and A. Neubauer, Regularization of inverse problems, Mathematics and its applications (Kluwer Academic Publishers, 2000).
  33. O. Scherzer and C. Groetsch, “Inverse scale space theory for inverse problems,” in “Scale-Space and Morphology in Computer Vision,”, vol. 2106 of Lecture Notes in Computer Science, M. Kerckhove, ed. (Springer, 2006), pp. 317–325. [CrossRef]
  34. B. Kaltenbacher, “Some Newton-type methods for the regularization of nonlinear ill-posed problems,” Inv. Probl.13, 729 (1997). [CrossRef]
  35. M. Hanke, “A regularizing Levenberg - Marquardt scheme, with applications to inverse groundwater filtration problems,” Inv. Probl.13, 79 (1997). [CrossRef]
  36. P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput.14, 1487–1503 (1993). [CrossRef]
  37. T. Correia, A. Gibson, M. Schweiger, and J. Hebden, “Selection of regularization parameter for optical topography,” J. Biomed. Opt.14, 034044 (2009). [CrossRef] [PubMed]
  38. Q. Fang and D. Boas, “Tetrahedral mesh generation from volumetric binary and gray-scale images,” in “Proceedings of IEEE International Symposium on Biomedical Imaging,”(2009), pp. 1142–1145. [CrossRef]
  39. B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol.52, 577 (2007). [CrossRef] [PubMed]
  40. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol.50, 4225 (2005). [CrossRef] [PubMed]
  41. J. Aguirre, A. Sisniega, J. Ripoll, M. Desco, and J. J. Vaquero, “Design and development of a co-planar fluorescence and X-ray tomograph,” in “Nuclear Science Symposium Conference Record, 2008. NSS ’08. IEEE,”(2008), pp. 5412–5413. [CrossRef]
  42. D. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications,” Ph.D. thesis, University of Pennsylvania, Philadelphia (USA) (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited