OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 9 — Sep. 1, 2011
  • pp: 2665–2678

Evaluation of a spectrally resolved scattering microscope

Michael Schmitz, Thomas Rothe, and Alwin Kienle  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 9, pp. 2665-2678 (2011)
http://dx.doi.org/10.1364/BOE.2.002665


View Full Text Article

Enhanced HTML    Acrobat PDF (1054 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A scattering microscope was developed to investigate single cells and biological microstructures by light scattering measurements. The spectrally resolved part of the setup and its validation are shown in detail. The analysis of light scattered by homogenous polystyrene spheres allows the determination of their diameters using Mie theory. The diameters of 150 single polystyrene spheres were determined by the spectrally resolved scattering microscope. In comparison, the same polystyrene suspension stock was investigated by a collimated transmission setup. Mean diameters and standard deviations of the size distribution were evaluated by both methods with a statistical error of less than 1nm. The systematic errors of both devices are in agreement within the measurement accuracy.

© 2011 OSA

OCIS Codes
(180.0180) Microscopy : Microscopy
(290.1350) Scattering : Backscattering
(290.2200) Scattering : Extinction
(290.4020) Scattering : Mie theory
(290.5850) Scattering : Scattering, particles
(300.6550) Spectroscopy : Spectroscopy, visible

ToC Category:
Microscopy

History
Original Manuscript: July 6, 2011
Revised Manuscript: August 2, 2011
Manuscript Accepted: August 16, 2011
Published: August 23, 2011

Citation
Michael Schmitz, Thomas Rothe, and Alwin Kienle, "Evaluation of a spectrally resolved scattering microscope," Biomed. Opt. Express 2, 2665-2678 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-9-2665


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Amelink, M. P. L. Bard, S. A. Burgers, and H. J. C. M. Sterenborg, “Single-scattering spectroscopy for the endoscopic analysis of particle size in superficial layers of turbid media,” Appl. Opt.42, 4095–4101 (2003). [CrossRef] [PubMed]
  2. Y. Liu, X. Li, Y. L. Kim, and V. Backman, “Elastic backscattering spectroscopic microscopy,” Opt. Lett.30, 2445–2447 (2005). [CrossRef] [PubMed]
  3. F. K. Forster, A. Kienle, R. Michels, and R. Hibst, “Phase function measurements on nonspherical scatterers using a two-axis goniometer,” J. Biomed. Opt.11, 024018 (2006). [CrossRef] [PubMed]
  4. M. J. Berg, S. C. Hill, G. Videen, and K. P. Gurton, “Spatial filtering technique to image and measure two-dimensional near-forward scattering from single particles,” Opt. Express18, 9486–9495 (2010). [CrossRef] [PubMed]
  5. P. Albella, J. M. Saiz, J. M. Sanz, F. González, and F. Moreno, “Nanoscopic surface inspection by analyzing the linear polarization degree of the scattered light,” Opt. Lett.34, 1906–1908 (2009). [CrossRef] [PubMed]
  6. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt.28, 2331–2336 (1989). [CrossRef] [PubMed]
  7. T. Namita, Y. Kato, and K. Shimizu, “CT imaging of diffuse medium by time-resolved measurement of backscattered light,” Appl. Opt.48, D208–D217 (2009). [CrossRef] [PubMed]
  8. J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, and H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source-detector separations for which path lengths do not depend on scattering properties,” Appl. Opt.36, 5655–5661 (1997). [CrossRef] [PubMed]
  9. A. Kienle, C. D’Andrea, F. Foschum, P. Taroni, and A. Pifferi, “Light propagation in dry and wet softwood,” Opt. Express16, 9895–9906 (2008). [CrossRef] [PubMed]
  10. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. Dasari, L. Perelman, and M. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron.5, 1019–1026 (1999). [CrossRef]
  11. J. Allen, Y. Liu, Y. L. Kim, V. M. Turzhitsky, V. Backman, and G. A. Ameer, “Spectroscopic translation of cell-material interactions,” Biomaterials28, 162–174 (2007). [CrossRef]
  12. L. B. Lovat, K. Johnson, G. D. Mackenzie, B. R. Clark, M. R. Novelli, S. Davies, M. O’Donovan, C. Selvasekar, S. M. Thorpe, D. Pickard, R. Fitzgerald, T. Fearn, I. Bigio, and S. G. Bown, “Elastic scattering spectroscopy accurately detects high grade dysplasia and cancer in Barrett’s oesophagus,” Gut55, 1078–1083 (2006). [CrossRef] [PubMed]
  13. A. K. Popp, M. T. Valentine, P. D. Kaplan, and D. A. Weitz, “Microscopic origin of light scattering in tissue,” Appl. Opt.42, 2871–2880 (2003). [CrossRef] [PubMed]
  14. K. Rebner, M. Schmitz, B. Boldrini, A. Kienle, D. Oelkrug, and R. W. Kessler, “Dark-field scattering microscopy for spectral characterization of polystyrene aggregates,” Opt. Express18, 3116–3127 (2010). [CrossRef] [PubMed]
  15. H. Fang, L. Qiu, E. Vitkin, M. M. Zaman, C. Andersson, S. Salahuddin, L. M. Kimerer, P. B. Cipolloni, M. D. Modell, B. S. Turner, S. E. Keates, I. Bigio, I. Itzkan, S. D. Freedman, R. Bansil, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy,” Appl. Opt.46, 1760–1769 (2007). [CrossRef] [PubMed]
  16. P. Huang, M. Hunter, and I. Georgakoudi, “Confocal light scattering spectroscopic imaging system for in situ tissue characterization,” Appl. Opt.48, 2595–2599 (2009). [CrossRef] [PubMed]
  17. W. J. Cottrell, J. D. Wilson, and T. H. Foster, “Microscope enabling multimodality imaging, angle-resolved scattering, and scattering spectroscopy,” Opt. Lett.32, 2348–2350 (2007). [CrossRef] [PubMed]
  18. Z. J. Smith and A. J. Berger, “Validation of an integrated Raman- and angular-scattering microscopy system on heterogeneous bead mixtures and single human immune cells,” Appl. Opt.48, D109–D120 (2009). [CrossRef] [PubMed]
  19. R. Arimoto and J. Murray, “Orientation-dependent visibility of long thin objects in polarization-based microscopy,” Biophys. J.70, 2969–2980 (1996). [CrossRef] [PubMed]
  20. H. K. Roy, Y. Liu, R. K. Wali, Y. L. Kim, A. K. Kromine, M. J. Goldberg, and V. Backman, “Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis,” Gastroenterology126, 1071–1081 (2004). [CrossRef] [PubMed]
  21. T. Rothe, M. Schmitz, and A. Kienle, “Angular resolved scattering microscopy,” in “Advanced Microscopy Techniques II,” (SPIE, 2011), 808613.
  22. L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett.80, 627–630 (1998). [CrossRef]
  23. H. Fang, M. Ollero, E. Vitkin, L. Kimerer, P. Cipolloni, M. Zaman, S. Freedman, I. Bigio, I. Itzkan, E. Hanlon, and L. Perelman, “Noninvasive sizing of subcellular organelles with light scattering spectroscopy,” IEEE J Sel Top Quantum Electron9, 267–276 (2003). [CrossRef]
  24. A. Kienle and R. Hibst, “Light guiding in biological tissue due to scattering,” Phys. Rev. Lett.97, 018104 (2006). [CrossRef] [PubMed]
  25. A. Kienle, C. Wetzel, A. Bassi, D. Comelli, P. Taroni, and A. Pifferi, “Determination of the optical properties of anisotropic biological media using an isotropic diffusion model,” J. Biomed. Opt.12, 014026 (2007). [CrossRef] [PubMed]
  26. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys.330, 377–445 (1908). [CrossRef]
  27. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  28. R. Michels, “Verständnis des mikroskopischen Ursprungs der Lichtstreuung in biologischem Gewebe,” doctoral dissertation, Ulm University (2010).
  29. C. Tribastone and W. Peck, “Designing plastic optics: New applications emerging for optical glass substitutes,” in The Photonics Design and Applications Handbook, (Laurin Publishing, 1998), pp. H426–H433.
  30. M. Schmitz, T. Rothe, and A. Kienle, “Comparison between spectral resolved scattering microscopy and collimated transmission measurements,” in “Advanced Microscopy Techniques II,” (SPIE, 2011), 808614.
  31. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt.46, 3811–3820 (2007). [CrossRef] [PubMed]
  32. X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol.48, 4165–4172 (2003). [CrossRef]
  33. E. Collett, “Mueller-stokes matrix formulation of Fresnel’s equations,” Am. J. Phys.39, 517–528 (1971). [CrossRef]
  34. M. Schmitz, R. Michels, and A. Kienle, “Darkfield scattering spectroscopic microscopy evaluation using polystyrene beads,” in “Clinical and Biomedical Spectroscopy,” (SPIE, 2009), 73681W.
  35. A. D. Ward, M. Zhang, and O. Hunt, “Broadband Mie scattering from optically levitated aerosol droplets using a white LED,” Opt. Express16, 16390–16403 (2008). [CrossRef] [PubMed]
  36. A. Graßmann and F. Peters, “Size measurement of very small spherical particles by Mie scattering imaging (MSI),” Part. Part. Syst. Character.21, 379–389 (2004). [CrossRef]
  37. C. S. Mulvey, C. A. Sherwood, and I. J. Bigio, “Wavelength-dependent backscattering measurements for quantitative real-time monitoring of apoptosis in living cells,” J. Biomed. Opt.14, 064013 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited