OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 9 — Sep. 1, 2011
  • pp: 2698–2708

In vivo evaluation of demyelination and remyelination in a nerve crush injury model

E. Bélanger, F. P. Henry, R. Vallée, M. A. Randolph, I. E. Kochevar, J. M. Winograd, C. P. Lin, and D. Côté  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 9, pp. 2698-2708 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (4075 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nerves of the peripheral nervous system have, to some extent, the ability to regenerate after injury, particularly in instances of crush or contusion injuries. After a controlled crush injury of the rat sciatic nerve, demyelination and remyelination are followed with functional assessments and imaged both ex vivo and in vivo over the course of 4 weeks with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy. A new procedure compatible with live animal imaging is developed for performing histomorphometry of myelinated axons. This allows quantification of demyelination proximal and remyelination distal to the crush site ex vivo and in vivo respectively.

© 2011 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(190.4180) Nonlinear optics : Multiphoton processes
(180.4315) Microscopy : Nonlinear microscopy
(180.5655) Microscopy : Raman microscopy

ToC Category:
Neuroscience and Brain Imaging

Original Manuscript: June 6, 2011
Revised Manuscript: July 29, 2011
Manuscript Accepted: August 1, 2011
Published: August 24, 2011

E. Bélanger, F. P. Henry, R. Vallée, M. A. Randolph, I. E. Kochevar, J. M. Winograd, C. P. Lin, and D. Côté, "In vivo evaluation of demyelination and remyelination in a nerve crush injury model," Biomed. Opt. Express 2, 2698-2708 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7, 350–352 (1982). [CrossRef] [PubMed]
  2. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999). [CrossRef]
  3. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 16807–16812 (2005). [CrossRef] [PubMed]
  4. T. B. Huff and J.-X. Cheng, “In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue,” J. Microsc. 225(2), 175–82 (2007). [CrossRef] [PubMed]
  5. F. P. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Winograd, “Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy,” Plast. Reconstr. Surg. 123(2S), 123S–130S (2009). [CrossRef] [PubMed]
  6. H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89, 581–591 (2005). [CrossRef] [PubMed]
  7. E. Bélanger, S. Bégin, S. Laffray, Y. De Koninck, R. Vallée, and D. Côté, “Quantitative myelin imaging with coherent anti-Stokes Raman scattering microscopy: alleviating the excitation polarization dependence with circularly polarized laser beams,” Opt. Express 17(21), 18419–18432 (2009). [CrossRef]
  8. J. Imitola, D. Côté, S. Rasmussen, X. S. Xie, Y. Liu, T. Chitnis, R. L. Sidman, C. P. Lin, and S. J. Khoury, “Multimodal coherent anti-Stokes Raman scattering microscopy reveals microglia-associated myelin and axonal dysfunction in multiple sclerosis-like lesions in mice,” J. Biomed. Opt. 16(2), 021,109 (2011). [CrossRef]
  9. C. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008). [CrossRef]
  10. S. Bégin, E. Bélanger, S. Laffray, R. Vallée, and D. Côté, “In vivo optical monitoring of tissue pathologies and diseases with vibrational contrast,” J. Biophoton. 2(11), 632–642 (2009). [CrossRef]
  11. T. T. Le, S. Yue, and J.-X. Cheng, “Shedding new light on lipid biology with coherent anti-Stokes Raman scattering microscopy,” J. Lipid. Res. 51(11), 3091–3102 (2010). [CrossRef] [PubMed]
  12. J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011). [CrossRef] [PubMed]
  13. J. R. Bain, S. E. Mackinnon, and D. A. Hunter, “Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat,” Plast. Reconstr. Surg. 83(1), 129–138 (1989). [CrossRef] [PubMed]
  14. I. Veilleux, J. A. Spencer, D. P. Biss, D. Côté, and C. P. Lin, “In vivo cell tracking with video rate multimodality laser scanning microscopy,” IEEE J. Sel. Top. Quantum Electron. 14, 10–18 (2008). [CrossRef]
  15. J. S. O’Brien and E. L. Sampson, “Lipid composition of the normal human brain: gray matter, white matter, and myelin,” J. Lipid. Res. 6(4), 537–544 (1965).
  16. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33(2), 156–158 (2008). [CrossRef] [PubMed]
  17. W. Niblack, An Introduction to Digital Image Processing (Prentice-Hall International, 1986).
  18. G. Veshapidze, M. L. Trachy, M. H. Shah, and B. D. DePaola, “Reducing the uncertainty in laser beam size measurement with a scanning edge method,” Appl. Opt. 45(32), 8197–8199 (2006). [CrossRef] [PubMed]
  19. M. Coleman, “Axon degeneration mechanisms: commonality amid diversity,” Nat. Rev. Neurosci. 6(11), 889–898 (2005). [CrossRef] [PubMed]
  20. K. Hirata and M. Kawabuchi, “Myelin phagocytosis by macrophages and nonmacrophages during Wallerian degeneration,” Microsc. Res. Tech. 57(6), 541–547 (2002). [CrossRef] [PubMed]
  21. J. Knöferle, J. C. Koch, T. Ostendorf, U. Michel, V. Planchamp, P. Vutova, L. Tönges, C. Stadelmann, W. Brück, M. Bähr, and P. Lingor, “Mechanisms of acute axonal degeneration in the optic nerve in vivo,” Proc. Natl. Acad. Sci. U.S.A. 107(13), 6064–6069 (2010). [CrossRef] [PubMed]
  22. R. Haralick, K. Shanmuga, and I. Dinstein, “Textural Features For Image Classification,” IEEE Trans. Syst. Man Cyb. SMC3(6), 610–621 (1973). [CrossRef]
  23. M. Balu, G. Liu, Z. Chen, B. J. Tromberg, and E. O. Potma, “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express 18(3), 2380–2388 (2010). [CrossRef] [PubMed]
  24. S. Murugkar, B. Smith, P. Srivastava, A. Moica, M. Naji, C. Brideau, P. K. Stys, and H. Anis, “Miniaturized multimodal CARS microscope based on MEMS scanning and a single laser source,” Opt. Express 18(23), 23796–23804 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited