OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 9 — Sep. 1, 2011
  • pp: 2721–2730

Field-portable reflection and transmission microscopy based on lensless holography

Myungjun Lee, Oguzhan Yaglidere, and Aydogan Ozcan  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 9, pp. 2721-2730 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (4926 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a lensfree dual-mode holographic microscope that can image specimens in both transmission and reflection geometries using in-line transmission and off-axis reflection holography, respectively. This field-portable dual-mode holographic microscope has a weight of ~200 g with dimensions of 15 x 5.5 x 5cm, where a laser source is powered by two batteries. Based on digital in-line holography, our transmission microscope achieves a sub-pixel lateral resolution of ≤2 µm over a wide field-of-view (FOV) of ~24 mm2 due to its unit fringe magnification geometry. Despite its simplicity and ease of operation, in-line transmission geometry is not suitable to image dense or connected objects such as tissue slides since the reference beam gets distorted causing severe aberrations in reconstruction of such objects. To mitigate this challenge, on the same cost-effective and field-portable assembly we built a lensless reflection mode microscope based on digital off-axis holography where a beam-splitter is used to interfere a tilted reference wave with the reflected light from the object surface, creating an off-axis hologram of the specimens on a CMOS sensor-chip. As a result of the reduced space-bandwidth product of the off-axis geometry compared to its in-line counterpart, the imaging FOV of our reflection mode is reduced to ~9 mm2, while still achieving a similar sub-pixel resolution of ≤2 µm. We tested the performance of this compact dual-mode microscopy unit by imaging a US-air force resolution test target, various micro-particles as well as a histopathology slide corresponding to skin tissue. Due to its compact, cost-effective, and lightweight design, this dual-mode lensless holographic microscope might especially be useful for field-use or for conducting microscopic analysis in resource-poor settings.

© 2011 OSA

OCIS Codes
(170.1650) Medical optics and biotechnology : Coherence imaging
(180.0180) Microscopy : Microscopy
(090.1995) Holography : Digital holography

ToC Category:

Original Manuscript: July 7, 2011
Revised Manuscript: August 11, 2011
Manuscript Accepted: August 11, 2011
Published: August 30, 2011

Virtual Issues
Advances in Optics for Biotechnology, Medicine, and Surgery (2011) Biomedical Optics Express

Myungjun Lee, Oguzhan Yaglidere, and Aydogan Ozcan, "Field-portable reflection and transmission microscopy based on lensless holography," Biomed. Opt. Express 2, 2721-2730 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Gabor, “A new microscopic principle,” Nature161(4098), 777–778 (1948). [CrossRef] [PubMed]
  2. J. W. Goodman, Introduction to Fourier Optics (Robert & Company, 2005), chaps. 3,4, and 9.
  3. G. Liu and P. D. Scott, “Phase retrieval and twin-image elimination for in-line Fresnel holograms,” J. Opt. Soc. Am. A4(1), 159–165 (1987). [CrossRef]
  4. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt.33(2), 179–181 (1994). [CrossRef] [PubMed]
  5. F. Dubois, L. Joannes, and J. C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt.38(34), 7085–7094 (1999). [CrossRef] [PubMed]
  6. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt.39(23), 4070–4075 (2000). [CrossRef] [PubMed]
  7. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A.98(20), 11301–11305 (2001). [CrossRef] [PubMed]
  8. G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt.41(22), 4489–4496 (2002). [CrossRef] [PubMed]
  9. L. Repetto, E. Piano, and C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett.29(10), 1132–1134 (2004). [CrossRef] [PubMed]
  10. T.-C. Poon, “Recent progress in optical scanning holography,” J. Hologr. Speckle1(1), 6–25 (2004). [CrossRef]
  11. B. Javidi, I. Moon, S. K. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express13(12), 4492–4506 (2005). [CrossRef] [PubMed]
  12. C. J. Mann, L. F. Yu, C. M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express13(22), 8693–8698 (2005). [CrossRef] [PubMed]
  13. J. Rosen, G. Indebetouw, and G. Brooker, “Homodyne scanning holography,” Opt. Express14(10), 4280–4285 (2006). [CrossRef] [PubMed]
  14. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt.45(5), 836–850 (2006). [CrossRef] [PubMed]
  15. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett.31(6), 775–777 (2006). [CrossRef] [PubMed]
  16. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A23(12), 3177–3190 (2006). [CrossRef] [PubMed]
  17. F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt.11(5), 054032 (2006). [CrossRef] [PubMed]
  18. G. Situ and J. T. Sheridan, “Holography: an interpretation from the phase-space point of view,” Opt. Lett.32(24), 3492–3494 (2007). [CrossRef] [PubMed]
  19. A. Stern and B. Javidi, “Theoretical analysis of three-dimensional imaging and recognition of micro-organisms with a single-exposure on-line holographic microscope,” J. Opt. Soc. Am. A24(1), 163–168 (2007). [CrossRef]
  20. S. S. Kou and C. J. Sheppard, “Imaging in digital holographic microscopy,” Opt. Express15(21), 13640–13648 (2007). [CrossRef] [PubMed]
  21. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics2(3), 190–195 (2008). [CrossRef]
  22. U. Gopinathan, G. Pedrini, and W. Osten, “Coherence effects in digital in-line holographic microscopy,” J. Opt. Soc. Am. A25(10), 2459–2466 (2008). [CrossRef] [PubMed]
  23. V. Micó, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express16(23), 19260–19270 (2008). [CrossRef] [PubMed]
  24. J. Di, J. Zhao, H. Jiang, P. Zhang, Q. Fan, and W. Sun, “High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning,” Appl. Opt.47(30), 5654–5659 (2008). [CrossRef] [PubMed]
  25. N. T. Shaked and J. Rosen, “Multiple-viewpoint projection holograms synthesized by spatially incoherent correlation with broadband functions,” J. Opt. Soc. Am. A25(8), 2129–2138 (2008). [CrossRef] [PubMed]
  26. M. M. Hossain, D. S. Mehta, and C. Shakher, “Information reduction using lensless Fourier transform digital composite holography,” Opt. Laser Technol.40(1), 120–128 (2008). [CrossRef]
  27. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express17(15), 13040–13049 (2009). [CrossRef] [PubMed]
  28. T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express17(10), 7873–7892 (2009). [CrossRef] [PubMed]
  29. L. Waller, Y. Luo, S. Y. Yang, and G. Barbastathis, “Transport of intensity phase imaging in a volume holographic microscope,” Opt. Lett.35(17), 2961–2963 (2010). [CrossRef] [PubMed]
  30. N. T. Shaked, T. M. Newpher, M. D. Ehlers, and A. Wax, “Parallel on-axis holographic phase microscopy of biological cells and unicellular microorganism dynamics,” Appl. Opt.49(15), 2872–2878 (2010). [CrossRef] [PubMed]
  31. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev.1(1), 018005 (2010). [CrossRef]
  32. O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip10(11), 1417–1428 (2010). [CrossRef] [PubMed]
  33. D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip10(14), 1787–1792 (2010). [CrossRef] [PubMed]
  34. L. Miccio, A. Finizio, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Dynamic DIC by digital holography microscopy for enhancing phase-contrast visualization,” Biomed. Opt. Express2(2), 331–344 (2011). [CrossRef] [PubMed]
  35. J. Hahn, S. Lim, K. Choi, R. Horisaki, and D. J. Brady, “Video-rate compressive holographic microscopic tomography,” Opt. Express19(8), 7289–7298 (2011). [CrossRef] [PubMed]
  36. W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip11(7), 1276–1279 (2011). [CrossRef] [PubMed]
  37. S. O. Isikman, W. Bishara, S. Mavandadi, F. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. U.S.A.108(18), 7296–7301 (2011), doi:. [CrossRef] [PubMed]
  38. S. O. Isikman, W. Bishara, U. Sikora, O. Yaglidere, J. Yeah, and A. Ozcan, “Field-portable lensfree tomographic microscope,” Lab Chip11(13), 2222–2230 (2011). [CrossRef] [PubMed]
  39. D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile phone based clinical microscopy for global health applications,” PLoS ONE4(7), e6320 (2009). [CrossRef] [PubMed]
  40. L. M. Lee, X. Cui, and C. Yang, “The application of on-chip optofluidic microscopy for imaging Giardia lamblia trophozoites and cysts,” Biomed. Microdevices11(5), 951–958 (2009). [CrossRef] [PubMed]
  41. A. R. Miller, G. L. Davis, Z. M. Oden, M. R. Razavi, A. Fateh, M. Ghazanfari, F. Abdolrahimi, S. Poorazar, F. Sakhaie, R. J. Olsen, A. R. Bahrmand, M. C. Pierce, E. A. Graviss, and R. Richards-Kortum, “Portable, battery-operated, low-cost, bright field and fluorescence microscope,” PLoS ONE5(8), e11890 (2010). [CrossRef] [PubMed]
  42. H. Zhu, O. Yaglidere, T. W. Su, D. Tseng, and A. Ozcan, “Cost-effective and compact wide-field fluorescent imaging on a cell-phone,” Lab Chip11(2), 315–322 (2011). [CrossRef] [PubMed]
  43. Z. J. Smith, K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. Wachsmann-Hogiu, “Cell-phone-based platform for biomedical device development and education applications,” PLoS ONE6(3), e17150 (2011). [CrossRef] [PubMed]
  44. A. F. Coskun, I. Sencan, T. W. Su, and A. Ozcan, “Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip,” Analyst (Lond.)136(17), 3512–3518 (2011). [CrossRef] [PubMed]
  45. W. P. Mutter and R. S. Brown, “Point-of-care photomicroscopy of urine,” N. Engl. J. Med.364(19), 1880–1881 (2011). [CrossRef] [PubMed]
  46. J. D. Bancroft and M. Gamble, Theory and Practice of Histological Techniques (Elsevier Health Sciences, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited