OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 9 — Sep. 1, 2011
  • pp: 2731–2740

Development of a highly specific amine-terminated aptamer functionalized surface plasmon resonance biosensor for blood protein detection

Rui Zheng, Byung-Wook Park, Dong-Shik Kim, and Brent D. Cameron  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 9, pp. 2731-2740 (2011)
http://dx.doi.org/10.1364/BOE.2.002731


View Full Text Article

Enhanced HTML    Acrobat PDF (1262 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents a generally applicable approach for the highly specific detection of blood proteins. Thrombin and thrombin-binding aptamers are chosen for demonstration purposes. The sensor was prepared by immobilizing amine-terminated aptamers onto a gold modified surface using a two-step self-assembled monolayer (SAM) immobilization technique and the physical detection is performed using Surface Plasmon Resonance (SPR). The developed sensor has an optimal detectable range of 5–1000 nM and the results show the sensor has good reversibility, sensitivity and selectivity. Furthermore, the sensor shows the potential of being improved and standardized for direct detection of other blood proteins for clinical applications.

© 2011 OSA

ToC Category:
Biosensors and Molecular Diagnostics

History
Original Manuscript: July 20, 2011
Revised Manuscript: August 10, 2011
Manuscript Accepted: August 12, 2011
Published: August 31, 2011

Citation
Rui Zheng, Byung-Wook Park, Dong-Shik Kim, and Brent D. Cameron, "Development of a highly specific amine-terminated aptamer functionalized surface plasmon resonance biosensor for blood protein detection," Biomed. Opt. Express 2, 2731-2740 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-9-2731


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. American Diabetes Association, “Standards of medical care in diabetes--2011,” Diabetes Care34(Suppl 1), S11–S61 (2011). [CrossRef] [PubMed]
  2. P. A. Behnisch, K. Hosoe, and S.-i. Sakai, “Bioanalytical screening methods for dioxins and dioxin-like compounds a review of bioassay/biomarker technology,” Environ. Int.27(5), 413–439 (2001). [CrossRef] [PubMed]
  3. A. G. Renehan, M. Zwahlen, C. Minder, S. T. O’Dwyer, S. M. Shalet, and M. Egger, “Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis,” Lancet363(9418), 1346–1353 (2004). [CrossRef] [PubMed]
  4. E. M. Voss, G. S. Cembrowski, B. L. Clasen, M. L. Spencer, M. B. Ainslie, and B. Haig, “Evaluation of capillary collection system for HbA1c specimens,” Diabetes Care15(5), 700–701 (1992). [CrossRef] [PubMed]
  5. R. R. Little, H. M. Wiedmeyer, D. H. Huang, D. E. Goldstein, R. G. Parsons, R. Kowal, and M. Johnston, “A simple blood collection device for analysis of glycohemoglobin (GHB),” Clin. Chem.44(Suppl. 6), A139 (1998).
  6. T. N. Higgins, “QA aspects for HbA1c measurements,” Clin. Biochem.41(1-2), 88–90 (2008). [CrossRef] [PubMed]
  7. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett.19(24), 2062–2064 (1994). [CrossRef] [PubMed]
  8. O. S. Khalil, “Spectroscopic and clinical aspects of noninvasive glucose measurements,” Clin. Chem.45(2), 165–177 (1999). [PubMed]
  9. B. D. Cameron and G. L. Cóte, “Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach,” IEEE Trans. Biomed. Eng.44(12), 1221–1227 (1997). [CrossRef] [PubMed]
  10. K. V. Larin, M. G. Ghosn, S. N. Ivers, A. Tellez, and J. F. Granada, “Quantification of glucose diffusion in arterial tissues by using optical coherence tomography,” Laser Phys. Lett.4(4), 312–317 (2007). [CrossRef]
  11. J. T. Liu, L. Y. Chen, M. C. Shih, Y. Chang, and W. Y. Chen, “The investigation of recognition interaction between phenylboronate monolayer and glycated hemoglobin using surface plasmon resonance,” Anal. Biochem.375(1), 90–96 (2008). [CrossRef] [PubMed]
  12. C. R. Yonzon, C. L. Haynes, X. Y. Zhang, J. T. Walsh, and R. P. Van Duyne, “A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference,” Anal. Chem.76(1), 78–85 (2004). [CrossRef] [PubMed]
  13. N. Vigneshwaran, G. Bijukumar, N. Karmakar, S. Anand, and A. Misra, “Autofluorescence characterization of advanced glycation end products of hemoglobin,” Spectrochim. Acta A Mol. Biomol. Spectrosc.61(1-2), 163–170 (2005). [CrossRef] [PubMed]
  14. L. C. Bock, L. C. Griffin, J. A. Latham, E. H. Vermaas, and J. J. Toole, “Selection of single-stranded DNA molecules that bind and inhibit human thrombin,” Nature355(6360), 564–566 (1992). [CrossRef] [PubMed]
  15. A. D. S. Ellington and J. W. Szostak, “In vitro selection of RNA molecules that bind specific ligands,” Nature346(6287), 818–822 (1990). [CrossRef] [PubMed]
  16. A. Abbas, M. J. Linman, and Q. A. Cheng, “New trends in instrumental design for surface plasmon resonance-based biosensors,” Biosens. Bioelectron.26(5), 1815–1824 (2011). [CrossRef] [PubMed]
  17. C. W. Chi, Y. H. Lao, Y. S. Li, and L. C. Chen, “A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter: application to label-free thrombin detection,” Biosens. Bioelectron.26(7), 3346–3352 (2011). [CrossRef] [PubMed]
  18. G. H. Liang, S. Y. Cai, P. Zhang, Y. Y. Peng, H. Chen, S. Zhang, and J. L. Kong, “Magnetic relaxation switch and colorimetric detection of thrombin using aptamer-functionalized gold-coated iron oxide nanoparticles,” Anal. Chim. Acta689(2), 243–249 (2011). [CrossRef] [PubMed]
  19. B. R. Baker, R. Y. Lai, M. S. Wood, E. H. Doctor, A. J. Heeger, and K. W. Plaxco, “An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids,” J. Am. Chem. Soc.128(10), 3138–3139 (2006). [CrossRef] [PubMed]
  20. H. A. Ho and M. Leclerc, “Optical sensors based on hybrid aptamer/conjugated polymer complexes,” J. Am. Chem. Soc.126(5), 1384–1387 (2004). [CrossRef] [PubMed]
  21. J. W. Liu and Y. Lu, “Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles,” Angew. Chem. Int. Ed. Engl.45(1), 90–94 (2005). [CrossRef] [PubMed]
  22. R. A. Potyrailo, R. C. Conrad, A. D. Ellington, and G. M. Hieftje, “Adapting selected nucleic acid ligands (aptamers) to biosensors,” Anal. Chem.70(16), 3419–3425 (1998). [CrossRef] [PubMed]
  23. M. N. Stojanovic, P. de Prada, and D. W. Landry, “Aptamer-based folding fluorescent sensor for cocaine,” J. Am. Chem. Soc.123(21), 4928–4931 (2001). [CrossRef] [PubMed]
  24. Y. Xiao, A. A. Lubin, A. J. Heeger, and K. W. Plaxco, “Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor,” Angew. Chem. Int. Ed. Engl.44(34), 5456–5459 (2005). [CrossRef] [PubMed]
  25. C. Polonschii, S. David, S. Tombelli, M. Mascini, and M. Gheorghiu, “A novel low-cost and easy to develop functionalization platform. Case study: aptamer-based detection of thrombin by surface plasmon resonance,” Talanta80(5), 2157–2164 (2010). [CrossRef] [PubMed]
  26. V. Ostatná, H. Vaisocherová, J. Homola, and T. Hianik, “Effect of the immobilisation of DNA aptamers on the detection of thrombin by means of surface plasmon resonance,” Anal. Bioanal. Chem.391(5), 1861–1869 (2008). [CrossRef] [PubMed]
  27. S. Balamurugan, A. Obubuafo, S. A. Soper, R. L. McCarley, and D. A. Spivak, “Designing highly specific biosensing surfaces using aptamer monolayers on gold,” Langmuir22(14), 6446–6453 (2006). [CrossRef] [PubMed]
  28. S. Skeie, G. Thue, and S. Sandberg, “Interpretation of hemoglobin A(1c) (HbA(1c)) values among diabetic patients: implications for quality specifications for HbA(1c),” Clin. Chem.47(7), 1212–1217 (2001). [PubMed]
  29. X. D. Su, Y. J. Wu, R. Robelek, and W. Knoll, “Surface plasmon resonance spectroscopy and quartz crystal microbalance study of streptavidin film structure effects on biotinylated DNA assembly and target DNA hybridization,” Langmuir21(1), 348–353 (2005). [CrossRef] [PubMed]
  30. D. M. Tasset, M. F. Kubik, and W. Steiner, “Oligonucleotide inhibitors of human thrombin that bind distinct epitopes,” J. Mol. Biol.272(5), 688–698 (1997). [CrossRef] [PubMed]
  31. D. B. Sacks, D. E. Bruns, D. E. Goldstein, N. K. Maclaren, J. M. McDonald, and M. Parrott, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care25(4), 750–786 (2002). [CrossRef]
  32. N. S. Kolatkar, G. S. Cembrowski, P. L. Callahan, and D. D. Etzwiler, “Intensive diabetes management requires very precise testing of glycohemoglobin,” Clin. Chem.40(8), 1608–1610 (1994). [PubMed]
  33. L. Q. Wang, L. Y. Li, Y. Xu, G. F. Cheng, P. A. He, and Y. Z. Fang, “Simultaneously fluorescence detecting thrombin and lysozyme based on magnetic nanoparticle condensation,” Talanta79(3), 557–561 (2009). [CrossRef] [PubMed]
  34. V. Pavlov, Y. Xiao, B. Shlyahovsky, and I. Willner, “Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin,” J. Am. Chem. Soc.126(38), 11768–11769 (2004). [CrossRef] [PubMed]
  35. H. M. So, K. Won, Y. H. Kim, B. K. Kim, B. H. Ryu, P. S. Na, H. Kim, and J. O. Lee, “Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements,” J. Am. Chem. Soc.127(34), 11906–11907 (2005). [CrossRef] [PubMed]
  36. Y. Xiao, A. A. Lubin, A. J. Heeger, and K. W. Plaxco, “Label-Free Electronic Detection of Thrombin in Blood Serum by Using an Aptamer-Based Sensor,” Angew. Chem.117(34), 5592–5595 (2005). [CrossRef]
  37. C. C. Chou, C. H. Chen, T. T. Lee, and K. Peck, “Optimization of probe length and the number of probes per gene for optimal microarray analysis of gene expression,” Nucleic Acids Res.32(12), e99 (2004). [CrossRef] [PubMed]
  38. J. W. Lee, S. J. Sim, S. M. Cho, and J. Lee, “Characterization of a self-assembled monolayer of thiol on a gold surface and the fabrication of a biosensor chip based on surface plasmon resonance for detecting anti-GAD antibody,” Biosens. Bioelectron.20(7), 1422–1427 (2005). [CrossRef] [PubMed]
  39. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev.105(4), 1103–1170 (2005). [CrossRef] [PubMed]
  40. Y. Higashimoto, S. Yamagishi, K. Nakamura, T. Matsui, M. Takeuchi, M. Noguchi, and H. Inoue, “In vitro selection of DNA aptamers that block toxic effects of AGE on cultured retinal pericytes,” Microvasc. Res.74(1), 65–69 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited