OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 1 — Jan. 1, 2012
  • pp: 137–152

Semi-empirical model of the effect of scattering on single fiber fluorescence intensity measured on a turbid medium

S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 1, pp. 137-152 (2012)
http://dx.doi.org/10.1364/BOE.3.000137


View Full Text Article

Enhanced HTML    Acrobat PDF (854 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Quantitative determination of fluorophore content from fluorescence measurements in turbid media, such as tissue, is complicated by the influence of scattering properties on the collected signal. This study utilizes a Monte Carlo model to characterize the relationship between the fluorescence intensity collected by a single fiber optic probe (FSF) and the scattering properties. Simulations investigate a wide range of biologically relevant scattering properties specified independently at excitation (λx) and emission (λm) wavelengths, including reduced scattering coefficients in the range μs(λx) ∈ [0.1 – 8]mm−1 and μs(λm) ∈ [0.25 – 1] × μs(λx). Investigated scattering phase functions (P(θ)) include both Henyey-Greenstein and Modified Henyey-Greenstein forms, and a wide range of fiber diameters (df ∈ [0.2 – 1.0] mm) was simulated. A semi-empirical model is developed to estimate the collected FSF as the product of an effective sampling volume, and the effective excitation fluence and the effective escape probability within the effective sampling volume. The model accurately estimates FSF intensities (r=0.999) over the investigated range of μs(λx) and μs(λm), is insensitive to the form of the P(θ), and provides novel insight into a dimensionless relationship linking FSF measured by different df.

© 2011 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(290.7050) Scattering : Turbid media
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Optics of Tissue and Turbid Media

History
Original Manuscript: September 29, 2011
Revised Manuscript: November 11, 2011
Manuscript Accepted: November 11, 2011
Published: December 14, 2011

Citation
S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, "Semi-empirical model of the effect of scattering on single fiber fluorescence intensity measured on a turbid medium," Biomed. Opt. Express 3, 137-152 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-1-137


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Thekkek, S. Anandasabapathy, and R. Richards-Kortum, “Optical molecular imaging for detection of Barrett’s-associated neoplasia,” World J. Gastroenterol.17:53–62 (2011). [CrossRef] [PubMed]
  2. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods.7:603–614 (2010). [CrossRef] [PubMed]
  3. S.L. Gibbs-Strauss, J.A. O’Hara, S. Srinivasan, P.J. Hoopes, T. Hasan, and B.W. Pogue, “Diagnostic detection of diffuse glioma tumors in vivo with molecular fluorescent probe-based transmission spectroscopy,” Med. Phys.36:974–983 (2009). [CrossRef] [PubMed]
  4. C. C. Lee, B. W. Pogue, R. R. Strawbridge, K. L. Moodie, L. R. Bartholomew, G. C. Burke, and P. J. Hoopes, “Comparison of photosensitizer (AIPcS2) quantification techniques: in situ fluorescence microsampling versus tissue chemical extraction,” Photochem. Photobiol.74:453–460 (2001). [CrossRef] [PubMed]
  5. J. C. Finlay, T. C. Zhu, A. Dimofte, D. Stripp, S. B. Malkowicz, T. M. Busch, and S. M. Hahn, “Interstitial fluorescence spectroscopy in the human prostate during motexafin lutetium-mediated photodynamic therapy,” Photochem. Photobiol.82:1270–1278 (2006). [CrossRef] [PubMed]
  6. D. J Robinson, M. B. Karakulluku, B. Kruijt, S. C. Kanick, R. L. P. van Veen, A. Amelink, H. J. C. M. Sterenborg, M. J. H. Witjes, and I. B. Tan, “Optical spectroscopy to guide photodynamic therapy of head and neck tumors,” IEEE J. Sel. Top. Quantum Electron.16:854–862 (2010). [CrossRef]
  7. A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med.21:166–178 (1997). [CrossRef] [PubMed]
  8. J. Wu, M. S. Feld, and R. P Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt.19:3585–3595 (1993). [CrossRef]
  9. C. M. Gardner, S. L. Jacques, and A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Appl. Opt.35:1780–1792 (1996). [CrossRef] [PubMed]
  10. M. G. Müller, I. Georgakoudi, Q. Zhang, J. Wu, and M. S. Feld, “Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption,” Appl. Opt.40:4633–4646 (2001). [CrossRef]
  11. Q. Zhang, M. G. Müller, J. Wu, and M. S. Feld, “Turbidity-free fluorescence spectroscopy of biological tissue,” Opt. Lett.25:1451–1453 (2000). [CrossRef]
  12. J. C. Finlay and T. H. Foster, “Recovery of hemoglobin oxygen saturation and intrinsic fluorescence with a forward-adjoint model,” Appl. Opt.44:1917–1933 (2005). [CrossRef] [PubMed]
  13. G. M. Palmer and N. Ramanujam, “Monte-carlo-based model for the extraction of intrinsic fluorescence from turbid media,” J. Biomed. Opt.13:024017 (2008). [CrossRef] [PubMed]
  14. G. M. Palmer, R. J. Viola, T. Schroeder, P. S. Yarmolenko, M. W. Dewhirst, and N. Ramanujam, “Quantitative diffuse reflectance and fluorescence spectroscopy: tool to monitor tumor physiology in vivo,” J. Biomed. Opt.14:024010 (2009). [CrossRef] [PubMed]
  15. R. H. Wilson, M. Chandra, J. Scheiman, D. Simeone, B. McKenna, J. Purdy, and M. A. Mycek, “Optical spectroscopy detects histological hallmarks of pancreatic cancer,” Opt. Express17:17502–17516 (2009). [CrossRef] [PubMed]
  16. A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt.15:067006 (2010). [CrossRef]
  17. B. W. Pogue and G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt.37: 7429–7436 (1998). [CrossRef]
  18. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron.7:1004–1012 (2001). [CrossRef]
  19. K. R. Diamond, M. S. Patterson, and T. J. Farrell, “Quantification of fluorophore concentration in tissue-simulating media by fluorescence measurements with a single optical fiber,” Appl. Opt.42:2436–2442 (2003). [CrossRef] [PubMed]
  20. H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Medical Laser Application22:23–34 (2007). [CrossRef]
  21. A. Amelink, B. Kruijt, D. J. Robinson, and H. J. C. M. Sterenborg, “Quantitative fluorescence spectroscopy in turbid media using fluorescence differential path length spectroscopy,” J. Biomed. Opt.13:054051 (2008). [CrossRef] [PubMed]
  22. M. Sinaasappel and H. J. C. M. Sterenborg, “Quantification of the hematoporphyrin derivative by fluorescence measurement using dual-wavelength excitation and dual-wavelength detection,” Appl. Opt.32:541–548 (1993). [CrossRef] [PubMed]
  23. R. Weersink, M. S. Patterson, K. Diamond, S. Silver, and N. Padgett, “Noninvasive measurement of fluorophore concentration in turbid media with a simple fluorescence /reflectance ratio technique,” Appl. Opt.40:6389–6395 (2001). [CrossRef]
  24. S. C. Kanick, U. A. Gamm, M. Schouten, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of the reduced scattering coefficient of turbid media using single fiber reflectance spectroscopy: fiber diameter and phase function dependence,” Biomed. Opt. Express2:1687–1702 (2011). [CrossRef] [PubMed]
  25. S. C. Kanick, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Method to quantitatively estimate wavelength-dependent scattering properties from multi-diameter single fiber reflectance spectra measured in a turbid medium,” Opt. Lett.36:2997–2999 (2011). [CrossRef] [PubMed]
  26. U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of tissue scattering properties using multi-diameter single fiber reflectance spectroscopy: in silico sensitivity analysis,” Biomed. Opt. Express2:3150–3166 (2011). [CrossRef] [PubMed]
  27. L. Wang, S. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comp. Meth. Prog. Biomed.47:131–146 (1995). [CrossRef]
  28. W. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quant. Electron.26:2166–2185 (1990). [CrossRef]
  29. A. Amelink, D. J. Robinson, and H. J. C. M. Sterenborg, “Confidence intervals on fit parameters derived from optical reflectance spectroscopy measurements,” J. Biomed. Opt.13:05040144 (2008). [CrossRef]
  30. E. J. Hudson, M. R. Stringer, F. Cairnduff, D. V. Ash, and M. A. Smith, “The optical properties of skin tumours measured during superficial photodynamic therapy,” Laser. Med. Sci.9:99–103 (1994). [CrossRef]
  31. F. Bevilacqua and C. Depeursinge, “Monte Carlo study of diffuse reflectance at source–detector separations close to one transport mean free path,” J. Opt. Soc. Am. A16:2935–2945 (1999). [CrossRef]
  32. A. Kienle, F. Forster, and R. Hibst, “Influence of the phase function on determination of the optical properties of biological tissue by spatially resolved reflectance,” Opt. Lett.26:1571–1573 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited