OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 1 — Jan. 1, 2012
  • pp: 160–169

Tensor total variation approach to optical coherence tomography reconstruction for improved visualization of retinal microvasculature

Alexander Wong, Sepideh Hariri, Eun Sun Song, and Kostadinka Bizheva  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 1, pp. 160-169 (2012)
http://dx.doi.org/10.1364/BOE.3.000160


View Full Text Article

Enhanced HTML    Acrobat PDF (1501 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel optical coherence tomography (OCT) reconstruction approach is introduced for improved visualization of inner-retina capillaries in retinal OCT tomograms. The proposed method utilizes a minimization framework based on a tensor total variation (TTV) energy functional, to enforce capillary structural characteristics in the spatial domain. By accounting for structure tensor characteristics, the TTV reconstruction method allows for contrast enhancement of capillary structural characteristics. The novel TTV method was tested on high resolution OCT images acquired in-vivo from the foveal region of the retina of a healthy human subject. Experimental results demonstrate significant contrast and visibility enhancement of the inner retina capillaries in the retinal OCT tomograms, achieved by use of the TTV reconstruction method. Therefore, the TTV method has a strong potential for improved disease progression analysis based on the study of disease-induced changes in the inner retina vasculature.

© 2011 OSA

OCIS Codes
(100.0100) Image processing : Image processing
(100.2980) Image processing : Image enhancement
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(100.3008) Image processing : Image recognition, algorithms and filters

ToC Category:
Image Processing

History
Original Manuscript: October 12, 2011
Revised Manuscript: November 29, 2011
Manuscript Accepted: November 29, 2011
Published: December 19, 2011

Citation
Alexander Wong, Sepideh Hariri, Eun Sun Song, and Kostadinka Bizheva, "Tensor total variation approach to optical coherence tomography reconstruction for improved visualization of retinal microvasculature," Biomed. Opt. Express 3, 160-169 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-1-160


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Friedman, “A hemodynamic model of the pathogenesis of age-related macular degeneration,” Am. J. Ophthalmol.124, 677–682 (1997). [PubMed]
  2. J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefansson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res.21, 359–393 (2002). [CrossRef] [PubMed]
  3. V. Patel, S. Rassam, R. Newsom, J. Wiek, and E. Kohner, “Retinal blood flow in diabetic retinopathy,” Br. Med. J.305(6855), 678–683 (1992). [CrossRef]
  4. S. Dithmar and F. G. Holz, Fluorescence Angiography in Ophthalmology (Springer, 2008).
  5. M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology101, 529–533 (1994). [PubMed]
  6. L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology93, 611–617 (1986). [PubMed]
  7. C. E. Riva, G. T. Feke, B. Eberli, and V. Benary, “Bidirectional LDV system for absolute measurement of blood speed in retinal vessels,” Appl. Opt.18, 2301–2306 (1979). [CrossRef] [PubMed]
  8. G. Michelson, B. Schmauss, M. Langhans, J. Haraznv, and M. Groh, “Principle, validity, and reliability of scanning laser Doppler flowmetry,” J. Glaucoma5, 99–105 (1996). [CrossRef] [PubMed]
  9. Y. Tamaki, M. Araie, E. Kawamoto, S. Eguchi, and H. Fujii, “Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon,” Invest. Ophthalmol. Vis. Sci.35, 3825–3834 (1994). [PubMed]
  10. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991). [CrossRef] [PubMed]
  11. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt.1, 157–173 (1996). [CrossRef]
  12. X. J. Wang, T. E. Milner, and J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett.20(11), 1337–1339 (1995). [CrossRef] [PubMed]
  13. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett.25(2), 114–116 (2000). [CrossRef]
  14. R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express11(23), 3116–3121 (2003). [CrossRef] [PubMed]
  15. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time domain optical coherence tomography,” Opt. Express16(9), 6008–6025 (2008). [CrossRef] [PubMed]
  16. Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express16(16), 12350–12361 (2008). [CrossRef] [PubMed]
  17. A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Resonant Doppler flow imaging and optical vivisection of retinal blood vessels,” Opt. Express15(2), 408–422 (2007). [CrossRef] [PubMed]
  18. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express15(7), 4083–4097 (2007). [CrossRef] [PubMed]
  19. H. Ren, Y. Wang, J. Stuart Nelson, and Z. Chen, “Power optical Doppler tomography imaging of blood vessel in human skin and M-mode Doppler imaging of blood flow in chick chorioallantoic membrane,” Proc. SPIE4956225–231 (2003). [CrossRef]
  20. H. Ren, T. Sun, D. J. MacDonald, M. J. Cobb, and X. Li, “Real time in vivo blood-flow imaging by moving-scatterer-sensitive spectral-domain optical Doppler tomography,” Opt. Lett.31927–929 (2006). [CrossRef] [PubMed]
  21. H. Ren and X. Li, “Clutter rejection filters for optical Doppler tomography,” Opt. Express146103–6112 (2006). [CrossRef] [PubMed]
  22. T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express17(5), 4166–4176 (2009). [CrossRef] [PubMed]
  23. S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett.33(8), 836–838 (2008). [CrossRef] [PubMed]
  24. A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express17(13), 10584–10598 (2009). [CrossRef] [PubMed]
  25. T. N. Crawford, D. V. Alfaro, J. B. Kerrison, and E. P. Jablon, “Diabetic retinopathy and angiogenesis,” Curr. Diabetes Rev.5(1), 8–13 (2009). [CrossRef] [PubMed]
  26. H. Kokotas, M. Grigoriadou, and M. B. Petersen, “Age-related macular degeneration: genetic and clinical findings,” Clin. Chem. Lab. Med.49(4), 601–616 (2011). [CrossRef]
  27. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express16(15), 11438–11452 (2008). [CrossRef] [PubMed]
  28. J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express17(24), 22190–22200 (2010). [CrossRef]
  29. Z. Zhi, W. Cepurna, E. Johnson, T. Shen, J. Morrison, and R. K. Wang, “Volumetric and quantitative imaging of retinal blood flow in rats with optical microangiography,” Biomed. Opt. Express2(3), 579–591 (2011). [CrossRef] [PubMed]
  30. S. Makita, F. Jaillon, M. Yamanari, M Muira, and Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express19(2), 1271–1283 (2011). [CrossRef] [PubMed]
  31. S. Zotter, M. Pirchser, T Torzicky, M. Bonesi, E. Geotzinger, R. Leitgeb, and C. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express19(2), 1217–1227 (2011). [CrossRef] [PubMed]
  32. R. A. Leitgeb, T. Schmoll, A. S. G. Singh, E. Diettrich, and G. Langs, “Comprehensive OCT imaging of retinal microvasculature without adaptive optics”, presented at Photonics West (BIOS), San Francisco, California, USA, January 22–27, 2011.
  33. P. Puvanathasan, P. Forbes, Z. Ren, D. Malchow, S. Boyd, and K. Bizheva, “High-speed, high-resolution Fourier-domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region,” Opt. Lett.33, 2479–2481 (2008). [PubMed]
  34. S. Hariri, A. A. Moayed, A. Dracopolos, C. Hyun, S. Boyd, and K. Bizheva, “Limiting factors to the OCT axial resolution for in-vivo imaging of human and rodent retina in the 1060nm wavelength range,” Opt. Express17(26) 24304–24316 (2009). [CrossRef]
  35. A. Mishra, A. Wong, K. Bizheva, and D. A. Clausi, “Interactive approach to intraretinal layer segmentation in optical coherence tomography images,” Opt. Express17(26) 23719–23728 (2009). [CrossRef]
  36. D. Cabrera Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection of retinal layer structures on optical coherence tomography images,” Opt. Express1310200–10216 (2005). [CrossRef] [PubMed]
  37. P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell.12629–639 (1990). [CrossRef]
  38. G. H. Cottet and L. Germain, “Image processing through reaction combined with nonlinear diffusion,” Math. Comp.61659–673 (1993). [CrossRef]
  39. J. Weickert, “Foundations and applications of nonlinear anisotropic diffusion filtering,” Z. Angew. Math. Mech.76(1) 283–286 (1996).
  40. J. Weickert, “Coherence-enhancing diffusion filtering,” Int. J. Comput. Vision31111–127 (1999). [CrossRef]
  41. A. Roussos and P. Maragos, “Tensor-based image diffusions derived from generalizations of the Total Variation and Beltrami Functionals,” in 2010 17th IEEE International Conference on Image Processing (ICIP) (2010), pp. 4141–4144. [CrossRef]
  42. M. Fedoryuk, “Method of steepest descent,” Encyclopaedia of Mathematics (Springer, 2001).
  43. R. Nowak, “Wavelet-based Rician noise removal for magnetic resonance imaging,” IEEE Trans. Image Process.8(10), 1408–1419 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited