OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 1 — Jan. 1, 2012
  • pp: 55–63

Optical coherence tomography-based freeze-drying microscopy

Mircea Mujat, Kristyn Greco, Kristin L. Galbally-Kinney, Daniel X. Hammer, R. Daniel Ferguson, Nicusor Iftimia, Phillip Mulhall, Puneet Sharma, Michael J. Pikal, and William J. Kessler  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 1, pp. 55-63 (2012)
http://dx.doi.org/10.1364/BOE.3.000055


View Full Text Article

Enhanced HTML    Acrobat PDF (1001 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new type of freeze-drying microscope based upon time-domain optical coherence tomography is presented here (OCT-FDM). The microscope allows for real-time, in situ 3D imaging of pharmaceutical formulations in vials relevant for manufacturing processes with a lateral resolution of <7 μm and an axial resolution of <5 μm. Correlation of volumetric structural imaging with product temperature measured during the freeze-drying cycle allowed investigation of structural changes in the product and determination of the temperature at which the freeze-dried cake collapses. This critical temperature is the most important parameter in designing freeze-drying processes of pharmaceutical products.

© 2011 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(110.4500) Imaging systems : Optical coherence tomography
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: November 9, 2011
Revised Manuscript: December 1, 2011
Manuscript Accepted: December 2, 2011
Published: December 7, 2011

Citation
Mircea Mujat, Kristyn Greco, Kristin L. Galbally-Kinney, Daniel X. Hammer, R. Daniel Ferguson, Nicusor Iftimia, Phillip Mulhall, Puneet Sharma, Michael J. Pikal, and William J. Kessler, "Optical coherence tomography-based freeze-drying microscopy," Biomed. Opt. Express 3, 55-63 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-1-55


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Arnst, A. Weintraub, J. Carey, K. Capell, and M. Arndt, “Biotech, finally,” in Business Week, June 13, 2005, issue 3937, http://www.businessweek.com/magazine/content/05_24/b3937001_mz001.htm .
  2. M. J. Pikal and S. Shah, “The collapse temperature in freeze drying: dependence on measurement methodology and rate of water removal from the glassy phase,” Int. J. Pharm.62(2-3), 165–186 (1990). [CrossRef]
  3. X. Tang and M. J. Pikal, “Design of freeze-drying processes for pharmaceuticals: practical advice,” Pharm. Res.21(2), 191–200 (2004). [CrossRef] [PubMed]
  4. E. Meister and H. Gieseler, “Freeze-dry microscopy of protein/sugar mixtures: drying behavior, interpretation of collapse temperatures and a comparison to corresponding glass transition data,” J. Pharm. Sci.98(9), 3072–3087 (2009). [CrossRef] [PubMed]
  5. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  6. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003). [CrossRef]
  7. K. Kobayashi, J. A. Izatt, M. D. Kulkarni, J. Willis, and M. V. Sivak., “High-resolution cross-sectional imaging of the gastrointestinal tract using optical coherence tomography: preliminary results,” Gastrointest. Endosc.47(6), 515–523 (1998). [CrossRef] [PubMed]
  8. B. D. Mac Neill, H. C. Lowe, E. Pomeranstev, D. DeJoseph, H. Yabushita, G. J. Tearney, B. E. Bouma, and I. K. Jang, “In-vivo characterization of plaque morphology by optical coherence tomography predicts coronary artery remodeling,” J. Am. Coll. Cardiol.41(6), 42 (2003). [CrossRef]
  9. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11(22), 2953–2963 (2003). [CrossRef] [PubMed]
  10. B. Cense, N. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express12(11), 2435–2447 (2004). [CrossRef] [PubMed]
  11. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurements of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995). [CrossRef]
  12. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002). [CrossRef] [PubMed]
  13. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003). [CrossRef] [PubMed]
  14. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003). [CrossRef] [PubMed]
  15. B. M. Hoeling, A. D. Fernandez, R. C. Haskell, E. Huang, W. R. Myers, D. C. Petersen, S. E. Ungersma, R. Y. Wang, M. E. Williams, and S. E. Fraser, “An optical coherence microscope for 3-dimensional imaging in developmental biology,” Opt. Express6(7), 136–146 (2000). [CrossRef] [PubMed]
  16. F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt.46, 541–553 (1999).
  17. M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt.11(5), 054013 (2006). [CrossRef] [PubMed]
  18. L. An and R. K. Wang, “Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography,” Opt. Lett.32(23), 3423–3425 (2007). [CrossRef] [PubMed]
  19. B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express15(20), 13375–13387 (2007). [CrossRef] [PubMed]
  20. A. F. Fercher, R. Leitgeb, C. K. Hitzenberger, H. Sattmann, and M. Wojtkowski, “Complex spectral interferometry OCT,” Proc. SPIE3564, 173–178 (1998). [CrossRef]
  21. E. Götzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express13(2), 583–594 (2005). [CrossRef] [PubMed]
  22. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett.28(22), 2201–2203 (2003). [CrossRef] [PubMed]
  23. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett.32(23), 3453–3455 (2007). [CrossRef] [PubMed]
  24. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett.27(16), 1415–1417 (2002). [CrossRef] [PubMed]
  25. A. G. Podoleanu, J. A. Rogers, D. A. Jackson, and S. Dunne, “Three dimensional OCT images from retina and skin,” Opt. Express7(9), 292–298 (2000). [CrossRef] [PubMed]
  26. K. Greco, M. Mujat, K. L. Galbally-Kinney, D. X. Hammer, R. D. Ferguson, N. Iftimia, P. Mulhall, P. Sharma, W. J. Kessler, and M. J. Pikal, “Accurate prediction of collapse temperature using optical coherence tomography (OCT) based freeze drying microscopy,” submitted to J. Pharm. Sci. [PubMed]
  27. A. A. Barresi, S. Ghio, D. Fissore, and R. Pisano, “Freeze drying of pharmaceutical excipients close to collapse temperature: influence of the process conditions on process time and product quality,” Drying Technol.27(6), 805–816 (2009). [CrossRef]
  28. K. Chatterjee, E. Y. Shalaev, and R. Suryanarayanan, “Partially crystalline systems in lyophilization: II. Withstanding collapse at high primary drying temperatures and impact on protein activity recovery,” J. Pharm. Sci.94(4), 809–820 (2005). [CrossRef] [PubMed]
  29. J. D. Colandene, L. M. Maldonado, A. T. Creagh, J. S. Vrettos, K. G. Goad, and T. M. Spitznagel, “Lyophilization cycle development for a high-concentration monoclonal antibody formulation lacking a crystalline bulking agent,” J. Pharm. Sci.96(6), 1598–1608 (2007). [CrossRef] [PubMed]
  30. F. Fonseca, S. Passot, O. Cunin, and M. Marin, “Collapse temperature of freeze-dried Lactobacillus bulgaricus suspensions and protective media,” Biotechnol. Prog.20(1), 229–238 (2004). [CrossRef] [PubMed]
  31. R. E. Johnson, M. E. Oldroyd, S. S. Ahmed, H. Gieseler, and L. M. Lewis, “Use of manometric temperature measurements (MTM) to characterize the freeze-drying behavior of amorphous protein formulations,” J. Pharm. Sci.99(6), 2863–2873 (2010). [PubMed]
  32. L. M. Lewis, R. E. Johnson, M. E. Oldroyd, S. S. Ahmed, L. Joseph, I. Saracovan, and S. Sinha, “Characterizing the freeze-drying behavior of model protein formulations,” AAPS PharmSciTech11(4), 1580–1590 (2010). [CrossRef] [PubMed]
  33. D. E. Overcashier, T. W. Patapoff, and C. C. Hsu, “Lyophilization of protein formulations in vials: investigation of the relationship between resistance to vapor flow during primary drying and small-scale product collapse,” J. Pharm. Sci.88(7), 688–695 (1999). [CrossRef] [PubMed]
  34. A. Parker, S. Rigby-Singleton, M. Perkins, D. Bates, D. Le Roux, C. J. Roberts, C. Madden-Smith, L. Lewis, D. L. Teagarden, R. E. Johnson, and S. S. Ahmed, “Determination of the influence of primary drying rates on the microscale structural attributes and physicochemical properties of protein containing lyophilized products,” J. Pharm. Sci.99(11), 4616–4629 (2010). [CrossRef] [PubMed]
  35. S. C. Schneid, P. M. Stärtzel, P. Lettner, and H. Gieseler, “Robustness testing in pharmaceutical freeze-drying: Inter-relation of process conditions and product quality attributes studied for a vaccine formulation,” Pharm. Dev. Technol.16(6), 583–590 (2011). [CrossRef] [PubMed]
  36. D. Q. Wang, J. M. Hey, and S. L. Nail, “Effect of collapse on the stability of freeze-dried recombinant factor VIII and α-amylase,” J. Pharm. Sci.93(5), 1253–1263 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (295 KB)      QuickTime
» Media 2: MOV (671 KB)      QuickTime
» Media 3: MOV (741 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited