OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 1 — Jan. 1, 2012
  • pp: 75–85

Optical imaging of metabolism in HER2 overexpressing breast cancer cells

Alex Walsh, Rebecca S. Cook, Brent Rexer, Carlos L. Arteaga, and Melissa C. Skala  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 1, pp. 75-85 (2012)
http://dx.doi.org/10.1364/BOE.3.000075


View Full Text Article

Enhanced HTML    Acrobat PDF (1090 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical redox ratio (fluorescence intensity of NADH divided by that of FAD), was acquired for a panel of breast cancer cell lines to investigate how overexpression of human epidermal growth factor receptor 2 (HER2) affects tumor cell metabolism, and how tumor metabolism may be altered in response to clinically used HER2-targeted therapies. Confocal fluorescence microscopy was used to acquire NADH and FAD auto-fluorescent images. The optical redox ratio was highest in cells overexpressing HER2 and lowest in triple negative breast cancer (TNBC) cells, which lack HER2, progesterone receptor, and estrogen receptor (ER). The redox ratio in ER-positive/HER2-negative cells was higher than what was seen in TNBC cells, but lower than that in HER2 overexpressing cells. Importantly, inhibition of HER2 using trastuzumab significantly reduced the redox ratio in HER2 overexpressing cells. Furthermore, the combinatorial inhibition of HER2 and ER decreased the redox ratio in ER+/HER2+ breast cancer cells to a greater extent than inhibition of either receptor alone. Interestingly, trastuzumab had little impact upon the redox ratio in a cell line selected for acquired resistance to trastuzumab. Taken together, these data indicate that the optical redox ratio measures changes in tumor metabolism that reflect the oncogenic effects of HER2 activity within the cell, as well as the response of the cell to therapeutic inhibition of HER2. Therefore, optical redox imaging holds the promise of measuring response and resistance to receptor-targeted breast cancer therapies in real time, which could potentially impact clinical decisions and improve patient outcome.

© 2011 OSA

OCIS Codes
(170.1530) Medical optics and biotechnology : Cell analysis
(170.1610) Medical optics and biotechnology : Clinical applications
(170.1790) Medical optics and biotechnology : Confocal microscopy
(170.2520) Medical optics and biotechnology : Fluorescence microscopy

ToC Category:
Cell Studies

History
Original Manuscript: October 13, 2011
Revised Manuscript: December 2, 2011
Manuscript Accepted: December 3, 2011
Published: December 9, 2011

Citation
Alex Walsh, Rebecca S. Cook, Brent Rexer, Carlos L. Arteaga, and Melissa C. Skala, "Optical imaging of metabolism in HER2 overexpressing breast cancer cells," Biomed. Opt. Express 3, 75-85 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-1-75


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. S. Ross and J. A. Fletcher, “The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy,” Stem Cells16(6), 413–428 (1998). [CrossRef] [PubMed]
  2. H. A. Burris, H. I. Hurwitz, E. C. Dees, A. Dowlati, K. L. Blackwell, B. O’Neil, P. K. Marcom, M. J. Ellis, B. Overmoyer, S. F. Jones, J. L. Harris, D. A. Smith, K. M. Koch, A. Stead, S. Mangum, and N. L. Spector, “Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas,” J. Clin. Oncol.23(23), 5305–5313 (2005). [CrossRef] [PubMed]
  3. M. J. Piccart-Gebhart, M. Procter, B. Leyland-Jones, A. Goldhirsch, M. Untch, I. Smith, L. Gianni, J. Baselga, R. Bell, C. Jackisch, D. Cameron, M. Dowsett, C. H. Barrios, G. Steger, C. S. Huang, M. Andersson, M. Inbar, M. Lichinitser, I. Láng, U. Nitz, H. Iwata, C. Thomssen, C. Lohrisch, T. M. Suter, J. Rüschoff, T. Suto, V. Greatorex, C. Ward, C. Straehle, E. McFadden, M. S. Dolci, R. D. Gelber, and Herceptin Adjuvant (HERA) Trial Study Team, “Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer,” N. Engl. J. Med.353(16), 1659–1672 (2005). [CrossRef] [PubMed]
  4. C. L. Vogel, M. A. Cobleigh, D. Tripathy, J. C. Gutheil, L. N. Harris, L. Fehrenbacher, D. J. Slamon, M. Murphy, W. F. Novotny, M. Burchmore, S. Shak, S. J. Stewart, and M. Press, “Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer,” J. Clin. Oncol.20(3), 719–726 (2002). [CrossRef] [PubMed]
  5. J. Chang, T. J. Powles, D. C. Allred, S. E. Ashley, A. Makris, R. K. Gregory, C. K. Osborne, and M. Dowsett, “Prediction of clinical outcome from primary tamoxifen by expression of biologic markers in breast cancer patients,” Clin. Cancer Res.6(2), 616–621 (2000). [PubMed]
  6. F. J. Esteva, D. H. Yu, M. C. Hung, and G. N. Hortobagyi, “Molecular predictors of response to trastuzumab and lapatinib in breast cancer,” Nat Rev Clin Oncol7(2), 98–107 (2010). [CrossRef] [PubMed]
  7. M. A. Jacobs, R. Ouwerkerk, A. C. Wolff, E. Gabrielson, H. Warzecha, S. Jeter, D. A. Bluemke, R. Wahl, and V. Stearns, “Monitoring of neoadjuvant chemotherapy using multiparametric, ²³Na sodium MR, and multimodality (PET/CT/MRI) imaging in locally advanced breast cancer,” Breast Cancer Res. Treat.128(1), 119–126 (2011). [CrossRef] [PubMed]
  8. L. K. Dunnwald, R. K. Doot, J. M. Specht, J. R. Gralow, G. K. Ellis, R. B. Livingston, H. M. Linden, V. K. Gadi, B. F. Kurland, E. K. Schubert, M. Muzi, and D. A. Mankoff, “PET tumor metabolism in locally advanced breast cancer patients undergoing neoadjuvant chemotherapy: value of static versus kinetic measures of fluorodeoxyglucose uptake,” Clin. Cancer Res.17(8), 2400–2409 (2011). [CrossRef] [PubMed]
  9. S. P. Li, A. Makris, M. J. Beresford, N. J. Taylor, M. L. W. Ah-See, J. J. Stirling, J. A. d’Arcy, D. J. Collins, R. Kozarski, and A. R. Padhani, “Use of dynamic contrast-enhanced MR imaging to predict survival in patients with primary breast cancer undergoing neoadjuvant chemotherapy,” Radiology260(1), 68–78 (2011). [CrossRef] [PubMed]
  10. K. Kawada, K. Murakami, T. Sato, Y. Kojima, H. Ebi, H. Mukai, M. Tahara, K. Shimokata, and H. Minami, “Prospective study of positron emission tomography for evaluation of the activity of lapatinib, a dual inhibitor of the ErbB1 and ErbB2 tyrosine kinases, in patients with advanced tumors,” Jpn. J. Clin. Oncol.37(1), 44–48 (2007). [CrossRef] [PubMed]
  11. O. Warburg, “On the origin of cancer cells,” Science123(3191), 309–314 (1956). [CrossRef] [PubMed]
  12. E. Furman, E. Rushkin, R. Margalit, P. Bendel, and H. Degani, “Tamoxifen induced changes in MCF7 human breast cancer: in vitro and in vivo studies using nuclear magnetic resonance spectroscopy and imaging,” J. Steroid Biochem. Mol. Biol.43(1-3), 189–195 (1992). [CrossRef] [PubMed]
  13. C. M. Cheng, M. Cohen, J. Wang, and C. A. Bondy, “Estrogen augments glucose transporter and IGF1 expression in primate cerebral cortex,” FASEB J.15(6), 907–915 (2001). [CrossRef] [PubMed]
  14. E. Suárez, D. Bach, J. Cadefau, M. Palacin, A. Zorzano, and A. Gumá, “A novel role of neuregulin in skeletal muscle. Neuregulin stimulates glucose uptake, glucose transporter translocation, and transporter expression in muscle cells,” J. Biol. Chem.276(21), 18257–18264 (2001). [CrossRef] [PubMed]
  15. D. Zhang, L. K. Tai, L. L. Wong, L. L. Chiu, S. K. Sethi, and E. S. Koay, “Proteomic study reveals that proteins involved in metabolic and detoxification pathways are highly expressed in HER-2/neu-positive breast cancer,” Mol. Cell. Proteomics4(11), 1686–1696 (2005). [CrossRef] [PubMed]
  16. J. A. Engelman, J. Luo, and L. C. Cantley, “The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism,” Nat. Rev. Genet.7(8), 606–619 (2006). [CrossRef] [PubMed]
  17. L. Wang, Q. Zhang, J. Zhang, S. Sun, H. Guo, Z. Jia, B. Wang, Z. Shao, Z. Wang, and X. Hu, “PI3K pathway activation results in low efficacy of both trastuzumab and lapatinib,” BMC Cancer11(1), 248–257 (2011). [CrossRef] [PubMed]
  18. K. Berns, H. M. Horlings, B. T. Hennessy, M. Madiredjo, E. M. Hijmans, K. Beelen, S. C. Linn, A. M. Gonzalez-Angulo, K. Stemke-Hale, M. Hauptmann, R. L. Beijersbergen, G. B. Mills, M. J. van de Vijver, and R. Bernards, “A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer,” Cancer Cell12(4), 395–402 (2007). [CrossRef] [PubMed]
  19. C. Cooper, G. Y. Liu, Y. L. Niu, S. Santos, L. C. Murphy, and P. H. Watson, “Intermittent hypoxia induces proteasome-dependent down-regulation of estrogen receptor alpha in human breast carcinoma,” Clin. Cancer Res.10(24), 8720–8727 (2004). [CrossRef] [PubMed]
  20. T. W. Miller, J. T. Forbes, C. Shah, S. K. Wyatt, H. C. Manning, M. G. Olivares, V. Sanchez, T. C. Dugger, N. de Matos Granja, A. Narasanna, R. S. Cook, J. P. Kennedy, C. W. Lindsley, and C. L. Arteaga, “Inhibition of mammalian target of rapamycin is required for optimal antitumor effect of HER2 inhibitors against HER2-overexpressing cancer cells,” Clin. Cancer Res.15(23), 7266–7276 (2009). [CrossRef] [PubMed]
  21. R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol.73(6), 636–641 (2001). [CrossRef] [PubMed]
  22. B. Chance, B. Schoener, R. Oshino, F. Itshak, and Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals,” J. Biol. Chem.254(11), 4764–4771 (1979). [PubMed]
  23. C. J. Gulledge and M. W. Dewhirst, “Tumor oxygenation: a matter of supply and demand,” Anticancer Res.16(2), 741–749 (1996). [PubMed]
  24. N. D. Kirkpatrick, C. Zou, M. A. Brewer, W. R. Brands, R. A. Drezek, and U. Utzinger, “Endogenous fluorescence spectroscopy of cell suspensions for chemopreventive drug monitoring,” Photochem. Photobiol.81(1), 125–134 (2005). [CrossRef] [PubMed]
  25. C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer122(2), 363–371 (2008). [CrossRef] [PubMed]
  26. M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A.104(49), 19494–19499 (2007). [CrossRef] [PubMed]
  27. J. H. Ostrander, C. M. McMahon, S. Lem, S. R. Millon, J. Q. Brown, V. L. Seewaldt, and N. Ramanujam, “Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status,” Cancer Res.70(11), 4759–4766 (2010). [CrossRef] [PubMed]
  28. W. Xia, S. Bacus, P. Hegde, I. Husain, J. Strum, L. Liu, G. Paulazzo, L. Lyass, P. Trusk, J. Hill, J. Harris, and N. L. Spector, “A model of acquired autoresistance to a potent ErbB2 tyrosine kinase inhibitor and a therapeutic strategy to prevent its onset in breast cancer,” Proc. Natl. Acad. Sci. U.S.A.103(20), 7795–7800 (2006). [CrossRef] [PubMed]
  29. J. Eng, R. M. Lynch, and R. S. Balaban, “Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes,” Biophys. J.55(4), 621–630 (1989). [CrossRef] [PubMed]
  30. C. A. Ritter, M. Perez-Torres, C. Rinehart, M. Guix, T. Dugger, J. A. Engelman, and C. L. Arteaga, “Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network,” Clin. Cancer Res.13(16), 4909–4919 (2007). [CrossRef] [PubMed]
  31. B. N. Rexer, A.-J. L. Ham, C. Rinehart, S. Hill, N. de Matos Granja-Ingram, A. M. González-Angulo, G. B. Mills, B. Dave, J. C. Chang, D. C. Liebler, and C. L. Arteaga, “Phosphoproteomic mass spectrometry profiling links Src family kinases to escape from HER2 tyrosine kinase inhibition,” Oncogene30(40), 4163–4174 (2011). [CrossRef] [PubMed]
  32. J. B. Griffiths, “Role of serum, insulin and amino acid concentration in contact inhibition of growth of human cells in culture,” Exp. Cell Res.75(1), 47–56 (1972). [CrossRef] [PubMed]
  33. J. M. Specht, B. F. Kurland, S. K. Montgomery, L. K. Dunnwald, R. K. Doot, J. R. Gralow, G. K. Ellis, H. M. Linden, R. B. Livingston, K. H. Allison, E. K. Schubert, and D. A. Mankoff, “Tumor metabolism and blood flow as assessed by positron emission tomography varies by tumor subtype in locally advanced breast cancer,” Clin. Cancer Res.16(10), 2803–2810 (2010). [CrossRef] [PubMed]
  34. S. Basu, W. Chen, J. Tchou, A. Mavi, T. Cermik, B. Czerniecki, M. Schnall, and A. Alavi, “Comparison of triple-negative and estrogen receptor-positive/progesterone receptor-positive/HER2-negative breast carcinoma using quantitative fluorine-18 fluorodeoxyglucose/positron emission tomography imaging parameters: a potentially useful method for disease characterization,” Cancer112(5), 995–1000 (2008). [CrossRef] [PubMed]
  35. Y. Zhao, H. Liu, Z. Liu, Y. Ding, S. P. Ledoux, G. L. Wilson, R. Voellmy, Y. Lin, W. Lin, R. Nahta, B. Liu, O. Fodstad, J. Chen, Y. Wu, J. E. Price, and M. Tan, “Overcoming trastuzumab resistance in breast cancer by targeting dysregulated glucose metabolism,” Cancer Res.71(13), 4585–4597 (2011). [CrossRef] [PubMed]
  36. R. W. Cheyne, L. Trembleau, A. McLaughlin, and T. A. Smith, “Changes in 2-fluoro-2-deoxy-D-glucose incorporation, hexokinase activity and lactate production by breast cancer cells responding to treatment with the anti-HER-2 antibody trastuzumab,” Nucl. Med. Biol.38(3), 339–346 (2011). [CrossRef] [PubMed]
  37. K. McLarty, A. Fasih, D. A. Scollard, S. J. Done, D. C. Vines, D. E. Green, D. L. Costantini, and R. M. Reilly, “18F-FDG small-animal PET/CT differentiates trastuzumab-responsive from unresponsive human breast cancer xenografts in athymic mice,” J. Nucl. Med.50(11), 1848–1856 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited