OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 10 — Oct. 1, 2012
  • pp: 2353–2370

Extended depth of focus adaptive optics spectral domain optical coherence tomography

Kazuhiro Sasaki, Kazuhiro Kurokawa, Shuichi Makita, and Yoshiaki Yasuno  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 10, pp. 2353-2370 (2012)
http://dx.doi.org/10.1364/BOE.3.002353


View Full Text Article

Enhanced HTML    Acrobat PDF (2498 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA.

© 2012 OSA

OCIS Codes
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: June 14, 2012
Revised Manuscript: August 6, 2012
Manuscript Accepted: August 29, 2012
Published: September 4, 2012

Virtual Issues
BIOMED 2012 (2012) Biomedical Optics Express

Citation
Kazuhiro Sasaki, Kazuhiro Kurokawa, Shuichi Makita, and Yoshiaki Yasuno, "Extended depth of focus adaptive optics spectral domain optical coherence tomography," Biomed. Opt. Express 3, 2353-2370 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-10-2353


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995). [CrossRef]
  3. R. A. Costa, M. Skaf, L. A. S. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res.25(3), 325–353 (2006). [CrossRef] [PubMed]
  4. S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology113(8), 1425–1431 (2006). [CrossRef] [PubMed]
  5. T. C. Chen, A. Zeng, W. Sun, M. Mujat, and J. F. de Boer, “Spectral domain optical coherence tomography and glaucoma,” Int. Ophthalmol. Clin.48(4), 29–45 (2008). [CrossRef] [PubMed]
  6. L. M. Sakata, J. Deleon-Ortega, V. Sakata, and C. A. Girkin, “Optical coherence tomography of the retina and optic nerve - a review,” Clin. Experiment. Ophthalmol.37(1), 90–99 (2009). [CrossRef] [PubMed]
  7. G. Häusler, “’Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21 (1998). [CrossRef]
  8. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003). [CrossRef] [PubMed]
  9. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003). [CrossRef] [PubMed]
  10. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express12(3), 367–376 (2004). [CrossRef] [PubMed]
  11. J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A14(11), 2873–2883 (1997). [CrossRef] [PubMed]
  12. W. J. Donnelly and A. Roorda, “Optimal pupil size in the human eye for axial resolution,” J. Opt. Soc. Am. A20(11), 2010–2015 (2003). [CrossRef] [PubMed]
  13. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A14(11), 2884–2892 (1997). [CrossRef] [PubMed]
  14. E. J. Fernández, I. Iglesias, and P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett.26(10), 746–748 (2001). [CrossRef] [PubMed]
  15. H. Hofer, L. Chen, G.-Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express8(11), 631–643 (2001). [CrossRef] [PubMed]
  16. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A18(3), 497–506 (2001). [CrossRef] [PubMed]
  17. J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express14(10), 4552–4569 (2006). [CrossRef] [PubMed]
  18. A. V. Larichev, P. V. Ivanov, N. G. Iroshnikov, V. I. Shmalgauzen, and L. J. Otten, “Adaptive system for eye-fundus imaging,” Quantum Electron.32(10), 902–908 (2002). [CrossRef]
  19. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express10(9), 405–412 (2002). [PubMed]
  20. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A24(5), 1313–1326 (2007). [CrossRef] [PubMed]
  21. R. D. Ferguson, Z. Zhong, D. X. Hammer, M. Mujat, A. H. Patel, C. Deng, W. Zou, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking,” J. Opt. Soc. Am. A27(11), A265–A277 (2010). [CrossRef] [PubMed]
  22. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett.29(18), 2142–2144 (2004). [CrossRef] [PubMed]
  23. Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express13(12), 4792–4811 (2005). [CrossRef] [PubMed]
  24. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express13(21), 8532–8546 (2005). [CrossRef] [PubMed]
  25. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express16(11), 8126–8143 (2008). [CrossRef] [PubMed]
  26. B. Cense, W. Gao, J. M. Brown, S. M. Jones, R. S. Jonnal, M. Mujat, B. H. Park, J. F. de Boer, and D. T. Miller, “Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics,” Opt. Express17(24), 21634–21651 (2009). [CrossRef] [PubMed]
  27. K. Kurokawa, K. Sasaki, S. Makita, M. Yamanari, B. Cense, and Y. Yasuno, “Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography,” Opt. Express18(8), 8515–8527 (2010). [CrossRef] [PubMed]
  28. M. Zacharria, B. Lamory, and N. Chateau, “Biomedical imaging: New view of the eye,” Nat. Photonics5(1), 24–26 (2011). [CrossRef]
  29. P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010). [CrossRef] [PubMed]
  30. C. Leahy, C. Leroux, C. Dainty, and L. Diaz-Santana, “Temporal dynamics and statistical characteristics of the microfluctuations of accommodation: dependence on the mean accommodative effort,” Opt. Express18(3), 2668–2681 (2010). [CrossRef] [PubMed]
  31. Z. Zalevsky, “Extended depth of focus imaging: a review,” SPIE Rev.1(1), 018001 (2010). [CrossRef]
  32. K. Richdale, G. L. Mitchell, and K. Zadnik, “Comparison of multifocal and monovision soft contact lens corrections in patients with low-astigmatic presbyopia,” Optom. Vis. Sci.83(5), 266–273 (2006). [CrossRef] [PubMed]
  33. J. C. Javitt and R. F. Steinert, “Cataract extraction with multifocal intraocular lens implantation: a multinational clinical trial evaluating clinical, functional, and quality-of-life outcomes,” Ophthalmology107(11), 2040–2048 (2000). [CrossRef] [PubMed]
  34. M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg.37(7), 1305–1312 (2011). [CrossRef] [PubMed]
  35. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt.34(11), 1859–1866 (1995). [CrossRef] [PubMed]
  36. P. Dufour, M. Piché, Y. De Koninck, and N. McCarthy, “Two-photon excitation fluorescence microscopy with a high depth of field using an axicon,” Appl. Opt.45(36), 9246–9252 (2006). [CrossRef] [PubMed]
  37. E. J. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun.268(2), 253–260 (2006). [CrossRef]
  38. M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt.11(5), 054013 (2006). [CrossRef] [PubMed]
  39. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett.27(4), 243–245 (2002). [CrossRef] [PubMed]
  40. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett.31(16), 2450–2452 (2006). [CrossRef] [PubMed]
  41. A. Burvall, K. Kołacz, Z. Jaroszewicz, and A. T. Friberg, “Simple lens axicon,” Appl. Opt.43(25), 4838–4844 (2004). [CrossRef] [PubMed]
  42. A. Yoshida, “Spherical aberration in beam optical systems,” Appl. Opt.21(10), 1812–1816 (1982). [CrossRef] [PubMed]
  43. C. Rivolta, “Depth of focus of optical systems with a small amount of spherical aberration,” Appl. Opt.29(22), 3249–3254 (1990). [CrossRef] [PubMed]
  44. A. A. Alkelly, “Spot size and radial intensity distribution of focused Gaussian beams in spherical and non-spherical aberration lenses,” Opt. Commun.277(2), 397–405 (2007). [CrossRef]
  45. K. Kurokawa, D. Tamada, S. Makita, and Y. Yasuno, “Adaptive optics retinal scanner for one-micrometer light source,” Opt. Express18(2), 1406–1418 (2010). [CrossRef] [PubMed]
  46. E. J. Fernández, A. Unterhuber, B. Povazay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express14(13), 6213–6225 (2006). [CrossRef] [PubMed]
  47. L. Chen, “Control algorithms,” in Adaptive Optics for Vision Science: Principles, Practices, Design and Applications, J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, eds. (Wiley-Interscience, 2006).
  48. J. E. Greivenkamp, “Spherical aberration and defocus,” in Field Guide to Geometrical Optics (SPIE, 2003), pp. 119–130.
  49. G. Dai, “Ocular wavefront conversion,” in Wavefront Optics for Vision Correction, illustrated ed. (SPIE, 2008), pp. 132–137.
  50. E. Hecht, “Modern optics: lasers and other topics,” in Optics, 4th ed. (Addison Wesley, 2001).
  51. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007). [CrossRef]
  52. American National Standards Institute, “American National Standard for the Safe Use of Lasers,” ANSI Z136.1-2000 (ANSI, New York, 2000).
  53. H.-L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A14(8), 1684–1695 (1997). [CrossRef] [PubMed]
  54. C. J. R. Sheppard and M. Gu, “Aberration compensation in confocal microscopy,” Appl. Opt.30(25), 3563–3568 (1991). [CrossRef] [PubMed]
  55. S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc.169(3), 391–405 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited