OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 10 — Oct. 1, 2012
  • pp: 2381–2394

Čerenkov radiation emission and excited luminescence (CREL) sensitivity during external beam radiation therapy: Monte Carlo and tissue oxygenation phantom studies

Rongxiao Zhang, Adam Glaser, Tatiana V. Esipova, Stephen C. Kanick, Scott C. Davis, Sergei Vinogradov, David Gladstone, and Brian W. Pogue  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 10, pp. 2381-2394 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2056 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Radiotherapy generates Čerenkov radiation emission in tissue, and spectral absorption features appearing in the emission spectrum can be used to quantify blood oxygen saturation (StO2) from the known absorptions of hemoglobin. Additionally, the Čerenkov light can be used to excite oxygen-sensitive phosphorescence of probe PtG4, whose emission lifetime directly reports on tissue oxygen partial pressure (pO2). Thus, it is feasible to probe both hemoglobin StO2 and pO2 using external radiation therapy beam to create as an internal light source in tumor tissue. In this study, the sensitivity and spatial origins of these two signals were examined. Emission was detected using a fiber-optic coupled intensifier-gated CCD camera interfaced to a spectrometer. The phosphorescence lifetimes were quantified and compared with StO2 changes previously measured. Monte Carlo simulations of the linear accelerator beam were used together with tracking of the optical signals, to predict the spatial distribution and zone sensitivity within the phantom. As the fiber-to-beam distance (FBD) varied from 0 to 30 mm, i.e. the distance from the fiber tip to the nearest side of the radiotherapy beam, the effective sampling depth for CR emission changed from 4 to 29 mm for the wavelengths in the range of 600-1000 nm. For the secondary emission (phosphorescence) the effective sampling depth was determined to be in the range of 9 to 19 mm. These results indicate that sampling of StO2 and pO2 in tissue should be feasible during radiation therapy, and that the radiation beam and fiber sampling geometry can be set up to acquire signals that originate as deep as a few centimeters in the tissue.

© 2012 OSA

OCIS Codes
(000.2170) General : Equipment and techniques
(300.0300) Spectroscopy : Spectroscopy
(300.6390) Spectroscopy : Spectroscopy, molecular

ToC Category:
Spectroscopic Diagnostics

Original Manuscript: June 18, 2012
Revised Manuscript: August 29, 2012
Manuscript Accepted: August 31, 2012
Published: September 5, 2012

Virtual Issues
BIOMED 2012 (2012) Biomedical Optics Express

Rongxiao Zhang, Adam Glaser, Tatiana V. Esipova, Stephen C. Kanick, Scott C. Davis, Sergei Vinogradov, David Gladstone, and Brian W. Pogue, "Čerenkov radiation emission and excited luminescence (CREL) sensitivity during external beam radiation therapy: Monte Carlo and tissue oxygenation phantom studies," Biomed. Opt. Express 3, 2381-2394 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Axelsson, S. C. Davis, D. J. Gladstone, and B. W. Pogue, “Cerenkov emission induced by external beam radiation stimulates molecular fluorescence,” Med. Phys.38(7), 4127–4132 (2011). [CrossRef] [PubMed]
  2. J. Axelsson, A. K. Glaser, D. J. Gladstone, and B. W. Pogue, “Quantitative Cherenkov emission spectroscopy for tissue oxygenation assessment,” Opt. Express20(5), 5133–5142 (2012). [CrossRef] [PubMed]
  3. T. V. Esipova, A. Karagodov, J. Miller, D. F. Wilson, T. M. Busch, and S. A. Vinogradov, “Two new “protected” oxyphors for biological oximetry: properties and application in tumor imaging,” Anal. Chem.83(22), 8756–8765 (2011). [CrossRef] [PubMed]
  4. J. M. Vanderkooi, G. Maniara, T. J. Green, and D. F. Wilson, “An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence,” J. Biol. Chem.262(12), 5476–5482 (1987). [PubMed]
  5. P. A. Cherenkov, “The spectrum of visible radiation produced by fast electrons,” C. R. Acad. Sci. URSS20, 651–655 (1938).
  6. C. Li, G. S. Mitchell, and S. R. Cherry, “Cerenkov luminescence tomography for small-animal imaging,” Opt. Lett.35(7), 1109–1111 (2010). [CrossRef] [PubMed]
  7. J. V. Jelley, “Cerenkov Radiation and Its Applications,” Br. J. Appl. Phys.6(7), 227–232 (1955). [CrossRef]
  8. R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of Cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol.54(16), N355–N365 (2009). [CrossRef] [PubMed]
  9. A. Ruggiero, J. P. Holland, J. S. Lewis, and J. Grimm, “Cerenkov luminescence imaging of medical isotopes,” J. Nucl. Med.51(7), 1123–1130 (2010). [CrossRef] [PubMed]
  10. A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi, “Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers,” Phys. Med. Biol.55(2), 483–495 (2010). [CrossRef] [PubMed]
  11. F. Boschi, L. Calderan, D. D’Ambrosio, M. Marengo, A. Fenzi, R. Calandrino, A. Sbarbati, and A. E. Spinelli, “In vivo ¹⁸F-FDG tumour uptake measurements in small animals using Cerenkov radiation,” Eur. J. Nucl. Med. Mol. Imaging38(1), 120–127 (2011). [CrossRef] [PubMed]
  12. Y. Xu, E. Chang, H. Liu, H. Jiang, S. S. Gambhir, and Z. Cheng, “Proof-of-concept study of monitoring cancer drug therapy with cerenkov luminescence imaging,” J. Nucl. Med.53(2), 312–317 (2012). [CrossRef] [PubMed]
  13. Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation,” Opt. Express18(24), 24441–24450 (2010). [CrossRef] [PubMed]
  14. A. E. Spinelli, C. Kuo, B. W. Rice, R. Calandrino, P. Marzola, A. Sbarbati, and F. Boschi, “Multispectral Cerenkov luminescence tomography for small animal optical imaging,” Opt. Express19(13), 12605–12618 (2011). [CrossRef] [PubMed]
  15. J. Zhong, C. Qin, X. Yang, Z. Chen, X. Yang, and J. Tian, “Fast-specific tomography imaging via Cerenkov emission,” Mol. Imaging Biol.14(3), 286–292 (2012). [CrossRef] [PubMed]
  16. J. Zhong, C. Qin, X. Yang, S. Zhu, X. Zhang, and J. Tian, “Cerenkov luminescence tomography for in vivo radiopharmaceutical imaging,” Int. J. Biomed. Imaging2011, 641618 (2011). [CrossRef] [PubMed]
  17. S. M. Evans and C. J. Koch, “Prognostic significance of tumor oxygenation in humans,” Cancer Lett.195(1), 1–16 (2003). [CrossRef] [PubMed]
  18. P. Vaupel, A. Mayer, and M. Höckel, “Einfluss des Hämoglobingehalts auf die Tumoroxygenierung: je höher, desto besser? [Impact of hemoglobin levels on tumor oxygenation: the higher, the better?]” Strahlenther. Onkol.182(2), 63–71 (2006). [CrossRef] [PubMed]
  19. M. Nordsmark, J. Loncaster, C. Aquino-Parsons, S. C. Chou, M. Ladekarl, H. Havsteen, J. C. Lindegaard, S. E. Davidson, M. Varia, C. West, R. Hunter, J. Overgaard, and J. A. Raleigh, “Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas,” Radiother. Oncol.67(1), 35–44 (2003). [CrossRef] [PubMed]
  20. D. M. Brizel, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, and M. W. Dewhirst, “Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res.56(5), 941–943 (1996). [PubMed]
  21. P. Vaupel, “Prognostic potential of the pre-therapeutic tumor oxygenation status,” Adv. Exp. Med. Biol.645, 241–246 (2009). [CrossRef] [PubMed]
  22. K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt.14(5), 054051 (2009). [CrossRef] [PubMed]
  23. R. S. Dothager, R. J. Goiffon, E. Jackson, S. Harpstrite, and D. Piwnica-Worms, “Cerenkov radiation energy transfer (CRET) imaging: a novel method for optical imaging of PET isotopes in biological systems,” PLoS ONE5(10), e13300 (2010). [CrossRef] [PubMed]
  24. A. Y. Lebedev, A. V. Cheprakov, S. Sakadzić, D. A. Boas, D. F. Wilson, and S. A. Vinogradov, “Dendritic phosphorescent probes for oxygen imaging in biological systems,” ACS Appl. Mater. Interfaces1(6), 1292–1304 (2009). [CrossRef] [PubMed]
  25. J. Fabian, “Simple method of anaerobic cultivation with removal of oxygen by a buffered glucose oxidase-catalase system,” J. Bacteriol.89, 921 (1965). [PubMed]
  26. S. A. Vinogradov, M. A. Fernandez-Seara, B. W. Dupan, and D. F. Wilson, “A method for measuring oxygen distributions in tissue using frequency domain phosphorometry,” Comp. Biochem. Physiol. A Mol. Integr. Physiol.132(1), 147–152 (2002). [CrossRef] [PubMed]
  27. K. Amako, S. Guatelli, V. N. Ivanchenko, M. Maire, B. Mascialino, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, M. G. Pia, M. Piergentili, T. Sasaki, and L. Urban, “Comparison of Geant4 electromagnetic physics models against the NIST reference data,” IEEE Trans. Nucl. Sci.52(4), 910–918 (2005). [CrossRef]
  28. Geant4 User’s Guide for Application Developers (2009).
  29. J. M. H. H. H. Buiteveld and M. Donze, “The optical properties of pure water,” Proc. SPIE2258, 174–183 (1994). [CrossRef]
  30. D. J. Segelstein, “The complex refractive index of water,” M.S. thesis (University of Missouri—Kansas City, 1981).
  31. W. B. Gratzer, “Human hemoglobin optical characteristics” (Medical Research Council Laboratories, Holly Hill, London).
  32. N. Kollias, “Tabulated molar extinction coefficient for hemoglobin in water” (Wellman Laboratories, Harvard Medical School, Boston).
  33. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992). [CrossRef] [PubMed]
  34. H. J. van Staveren, C. J. Moes, J. van Marie, S. A. Prahl, and M. J. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991). [CrossRef] [PubMed]
  35. Physics Reference Manual [Geant4] (2008), http://nemu.web.psi.ch/doc/manuals/software_manuals/Geant4/Geant4_PhysicsReferenceManual.pdf .
  36. S. A. Vinogradov, M. A. Fernandez-Searra, B. W. Dugan, and D. F. Wilson, “Frequency domain instrument for measuring phosphorescence lifetime distributions in heterogeneous samples,” Rev. Sci. Instrum.72(8), 3396–3406 (2001). [CrossRef]
  37. A. K. Glaser, R. Zhang, S. C. Davis, D. J. Gladstone, and B. W. Pogue, “Time-gated Cherenkov emission spectroscopy from linear accelerator irradiation of tissue phantoms,” Opt. Lett.37(7), 1193–1195 (2012). [CrossRef] [PubMed]
  38. E. G. Mik, T. Johannes, and C. Ince, “Monitoring of renal venous PO2 and kidney oxygen consumption in rats by a near-infrared phosphorescence lifetime technique,” Am. J. Physiol. Renal Physiol.294(3), F676–F681 (2008). [CrossRef] [PubMed]
  39. D. F. Wilson, W. M. F. Lee, S. Makonnen, O. Finikova, S. Apreleva, and S. A. Vinogradov, “Oxygen pressures in the interstitial space and their relationship to those in the blood plasma in resting skeletal muscle,” J. Appl. Physiol.101(6), 1648–1656 (2006). [CrossRef] [PubMed]
  40. L. S. Ziemer, W. M. F. Lee, S. A. Vinogradov, C. Sehgal, and D. F. Wilson, “Oxygen distribution in murine tumors: characterization using oxygen-dependent quenching of phosphorescence,” J. Appl. Physiol.98(4), 1503–1510 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited