OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 10 — Oct. 1, 2012
  • pp: 2405–2410

Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors

Alberto Sinibaldi, Emiliano Descrovi, Fabrizio Giorgis, Lorenzo Dominici, Mirko Ballarini, Pietro Mandracci, Norbert Danz, and Francesco Michelotti  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 10, pp. 2405-2410 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1107 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We exploit the properties of surface electromagnetic waves propagating at the surface of finite one dimensional photonic crystals to improve the performance of optical biosensors with respect to the standard surface plasmon resonance approach. We demonstrate that the hydrogenated amorphous silicon nitride technology is a versatile platform for fabricating one dimensional photonic crystals with any desirable design and operating in a wide wavelength range, from the visible to the near infrared. We prepared sensors based on photonic crystals sustaining either guided modes or surface electromagnetic waves, also known as Bloch surface waves. We carried out for the first time a direct experimental comparison of their sensitivity and figure of merit with surface plasmon polaritons on metal layers, by making use of a commercial surface plasmon resonance instrument that was slightly adapted for the experiments. Our measurements demonstrate that the Bloch surface waves on silicon nitride photonic crystals outperform surface plasmon polaritons by a factor 1.3 in terms of figure of merit.

© 2012 OSA

OCIS Codes
(130.6010) Integrated optics : Sensors
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(240.6690) Optics at surfaces : Surface waves
(160.5293) Materials : Photonic bandgap materials
(230.5298) Optical devices : Photonic crystals

ToC Category:
Biosensors and Molecular Diagnostics

Original Manuscript: July 3, 2012
Revised Manuscript: July 20, 2012
Manuscript Accepted: July 24, 2012
Published: September 6, 2012

Alberto Sinibaldi, Emiliano Descrovi, Fabrizio Giorgis, Lorenzo Dominici, Mirko Ballarini, Pietro Mandracci, Norbert Danz, and Francesco Michelotti, "Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors," Biomed. Opt. Express 3, 2405-2410 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron.10(8), i–ix (1995). [CrossRef] [PubMed]
  2. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express17(19), 16505–16517 (2009). [CrossRef] [PubMed]
  3. M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Act. B Chem.105(2), 360–364 (2005). [CrossRef]
  4. P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, and E. Descrovi, “Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves,” Sens. Act. B Chem.161(1), 1046–1052 (2012). [CrossRef]
  5. Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem.82(12), 5211–5218 (2010). [CrossRef] [PubMed]
  6. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am.67(4), 423–438 (1977). [CrossRef]
  7. J. Homola, Surface Plasmon Resonance Based Sensors (Springer-Verlag, Berlin, 2006).
  8. C. Summonte, R. Rizzoli, M. Bianconi, A. Desalvo, D. Iencinella, and F. Giorgis, “Wide band-gap silicon-carbon alloys deposited by very high frequency plasma enhanced chemical vapor depositions,” J. Appl. Phys.96(7), 3987–3997 (2004). [CrossRef]
  9. F. Demichelis, F. Giorgis, and C. F. Pirri, “Compositional and structural analysis of hydrogenated amorphous silicon-nitrogen alloys prepared by plasma-enhanced chemical vapour deposition,” Philos. Mag. B74(2), 155–168 (1996). [CrossRef]
  10. S. H. Baker, W. E. Spear, and R. A. G. Gibson, “Electronic and optical properties of a-Si1-xCx films prepared from a H2-diluted mixture of SiH4 and CH4,” Philos. Mag. B62(2), 213–223 (1990). [CrossRef]
  11. C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous silicon nitride: a suitable alloy for optical multilayered structures,” J. Non-Cryst. Solids352(9-20), 1294–1297 (2006). [CrossRef]
  12. F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Luminescence processes in amorphous hydrogenated silicon-nitride nanometric multilayers,” Phys. Rev. B60(16), 11572–11576 (1999). [CrossRef]
  13. S. Lettieri, S. Di Finizio, P. Maddalena, V. Ballarini, and F. Giorgis, “Second-harmonic generation in amorphous silicon nitride microcavities,” Appl. Phys. Lett.81(25), 4706–4708 (2002). [CrossRef]
  14. E. Descrovi, F. Giorgis, L. Dominici, and F. Michelotti, “Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal,” Opt. Lett.33(3), 243–245 (2008). [CrossRef] [PubMed]
  15. R. Martins, P. Baptista, L. Raniero, G. Doria, L. Silva, R. Franco, and E. Fortunato, “Amorphous/nano-crystalline silicon biosensor for the specific identification of unamplified nucleic acid sequences using gold nanoparticle probes,” Appl. Phys. Lett.90(2), 023903 (2007). [CrossRef]
  16. M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express20(6), 6703–6711 (2012). [CrossRef] [PubMed]
  17. M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett.100(6), 063305 (2012). [CrossRef]
  18. N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Höfer, U. Klotzbach, and M. Mertig, “Surface plasmon resonance platform technology for multi parameter analyses on polymer chips,” Eng. Life Sci.11(6), 566–572 (2011). [CrossRef]
  19. A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Act. B Chem. (to be published).
  20. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B Chem.54(1-2), 3–15 (1999). [CrossRef]
  21. R. C. Weast, CRC Handbook of Chemistry and Physics, 55th ed. (CRC, Cleveland, 1974).
  22. A. Shalabney and I. Abdulhalim, “Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation,” Opt. Lett.37(7), 1175–1177 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited