OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 10 — Oct. 1, 2012
  • pp: 2436–2451

Resonant waveguide sensing made robust by on-chip peak tracking through image correlation

K. Bougot-Robin, W. Wen, and H. Benisty  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 10, pp. 2436-2451 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2423 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a solution to make resonant-waveguide-grating sensing both robust and simpler to optically assess, in the spirit of biochips. Instead of varying wavelength or angle to track the resonant condition, the grating itself has a step-wise variation with typically few tens of neighboring “micropads.” An image capture with incoherent monochromatic light delivers spatial intensity sequences from these micropads. Sensitivity and robustness are discussed using correlation techniques on a realistic model (Fano shapes with noise and local distortion contributions). We confirm through fluid refractive index sensing experiments an improvement over the step-wise maximum position tracking by more than 2 orders of magnitude, demonstrating sensitivity down to 2 × 10−5 RIU, giving high potential development for bioarray imaging.

© 2012 OSA

OCIS Codes
(070.6110) Fourier optics and signal processing : Spatial filtering
(110.2960) Imaging systems : Image analysis
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(310.2785) Thin films : Guided wave applications
(050.5745) Diffraction and gratings : Resonance domain

ToC Category:
Biosensors and Molecular Diagnostics

Original Manuscript: July 13, 2012
Revised Manuscript: August 23, 2012
Manuscript Accepted: September 2, 2012
Published: September 11, 2012

K. Bougot-Robin, W. Wen, and H. Benisty, "Resonant waveguide sensing made robust by on-chip peak tracking through image correlation," Biomed. Opt. Express 3, 2436-2451 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Bougot-Robin, J.-L. Reverchon, M. Fromant, L. Mugherli, P. Plateau, and H. Benisty, “2D label-free imaging of resonant grating biochips in ultraviolet,” Opt. Express18(11), 11472–11482 (2010). [CrossRef] [PubMed]
  2. A. M. Ferrie, Q. Wu, and Y. Fang, “Resonant waveguide grating imager for live cell sensing,” Appl. Phys. Lett.97(22), 223704 (2010). [CrossRef] [PubMed]
  3. P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, “A new method for label-free imaging of biomolecular interactions,” Sens. Actuators B Chem.99(1), 6–13 (2004). [CrossRef]
  4. R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, S. Zimmerman, and Y. Ding “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,”,” Sensors (Basel Switzerland)11(2), 1476–1488 (2011). [CrossRef]
  5. E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron.11(6-7), 635–649 (1996). [CrossRef]
  6. A. Shalabney and I. Abdulhalim, “Sensitivity enhancement methods for surface plasmon sensors,” Laser Photonics Rev.5(4), 571–606 (2011). [CrossRef]
  7. S. George, I. D. Block, S. I. Jones, P. C. Mathias, V. Chaudhery, P. Vuttipittayamongkol, H. Y. Wu, L. O. Vodkin, and B. T. Cunningham, “Label-free prehybridization DNA microarray imaging using photonic crystals for quantitative spot quality analysis,” Anal. Chem.82(20), 8551–8557 (2010). [CrossRef] [PubMed]
  8. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A7(8), 1470–1474 (1990). [CrossRef]
  9. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961). [CrossRef]
  10. D. Pietroy, A. V. Tishchenko, M. Flury, and O. Parriaux, “Bridging pole and coupled wave formalisms for grating waveguide resonance analysis and design synthesis,” Opt. Express15(15), 9831–9842 (2007). [CrossRef] [PubMed]
  11. B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano5(11), 8999–9008 (2011). [CrossRef] [PubMed]
  12. B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B83(23), 235427 (2011). [CrossRef]
  13. N. Destouches, B. Sider, A. V. Tishchenko, and O. Parriaux, “Optimization of a waveguide grating for normal TM mode coupling,” Opt. Quantum Electron.38(1-3), 123–131 (2006). [CrossRef]
  14. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A13(5), 1024–1035 (1996). [CrossRef]
  15. A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B73(7), 075107 (2006). [CrossRef]
  16. M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev.6(4), 463–487 (2012). [CrossRef]
  17. T. K. Fang and T. N. Chang, “Determination of profile parameters of a Fano resonance without an ultrahigh-energy resolution,” Phys. Rev. A57(6), 4407–4412 (1998). [CrossRef]
  18. X. Liu, Y. Huang, L. Zhu, Z. Yuan, W. Li, and K.-Z. Xu, “Numerical determination of profile parameters for Fano resonance with definite energy resolution,” Nucl. Instrum. Methods Phys. Res.508(3), 448–453 (2003). [CrossRef]
  19. K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett.31(10), 1528–1530 (2006). [CrossRef] [PubMed]
  20. I. Abdulhalim, M. Auslender, and S. Hava, “Resonant and scatterometric gratings based nano-photonic structures for biosensing,” J. Nanophotonics1(1), 011680 (2007). [CrossRef]
  21. O. Krasnykov, M. Auslander, and I. Abdulhalim, “Optimizing the guided mode resonance structure for optical sensing in water,” Phys. Express1(0), 183–190 (2011).
  22. X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett.100(23), 231104 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited