OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 10 — Oct. 1, 2012
  • pp: 2452–2464

Use of a coherent fiber bundle for multi-diameter single fiber reflectance spectroscopy

C. L. Hoy, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 10, pp. 2452-2464 (2012)
http://dx.doi.org/10.1364/BOE.3.002452


View Full Text Article

Enhanced HTML    Acrobat PDF (1533 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Multi-diameter single fiber reflectance (MDSFR) spectroscopy enables quantitative measurement of tissue optical properties, including the reduced scattering coefficient and the phase function parameter γ. However, the accuracy and speed of the procedure are currently limited by the need for co-localized measurements using multiple fiber optic probes with different fiber diameters. This study demonstrates the use of a coherent fiber bundle acting as a single fiber with a variable diameter for the purposes of MDSFR spectroscopy. Using Intralipid optical phantoms with reduced scattering coefficients between 0.24 and 3 mm−1, we find that the spectral reflectance and effective path lengths measured by the fiber bundle (NA = 0.40) are equivalent to those measured by single solid-core fibers (NA = 0.22) for fiber diameters between 0.4 and 1.0 mm (r ≥ 0.997). This one-to-one correlation may hold for a 0.2 mm fiber diameter as well (r = 0.816); however, the experimental system used in this study suffers from a low signal-to-noise for small dimensionless reduced scattering coefficients due to spurious back reflections within the experimental system. Based on these results, the coherent fiber bundle is suitable for use as a variable-diameter fiber in clinical MDSFR quantification of tissue optical properties.

© 2012 OSA

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(290.7050) Scattering : Turbid media

ToC Category:
Optics of Tissue and Turbid Media

History
Original Manuscript: May 9, 2012
Revised Manuscript: July 18, 2012
Manuscript Accepted: July 19, 2012
Published: September 12, 2012

Citation
C. L. Hoy, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, "Use of a coherent fiber bundle for multi-diameter single fiber reflectance spectroscopy," Biomed. Opt. Express 3, 2452-2464 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-10-2452


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. C. Wilson and S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron.26, 2186–2199 (1990). [CrossRef]
  2. D. T. Delpy and M. Cope, “Quantification in tissue near-infrared spectroscopy,” Philos. Trans. R. Soc. London, B352, 649–659 (1997). [CrossRef]
  3. I. J. Bigio and S. G. Bown, “Spectrroscopic sensing of cancer and cancer therapy: Current status of translational research,” IEEE J. Quantum Electron.3, 259–267 (2004).
  4. A. Wax and V. Backman, Biomedical Applications of Light Scattering, Biophotonics Series (McGraw-Hill, 2009).
  5. S. C. Kanick, U. A. Gamm, M. Schouten, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of the reduced scattering coefficient of turbid media using single fiber reflectance spectroscopy: fiber diameter and phase function dependence,” Biomed. Opt. Express2, 1687–1702 (2011). [CrossRef] [PubMed]
  6. S. C. Kanick, C. van der Leest, J. G. J. V. Aerts, H. C. Hoogsteden, S. Kaščáková, H. J. C. M. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” JBO15, 017004 (2010). [CrossRef]
  7. S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. C. M. Sterenborg, A. Amelink, and J. G. J. V. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol.5, 981–987 (2010). [PubMed]
  8. S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Monte carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth,” Phys. Med. Biol.54, 6991 (2009). [CrossRef] [PubMed]
  9. S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Method to quantitate absorption coefficients from single fiber reflectance spectra without knowledge of the scattering properties,” Opt. Lett.36, 2791–2793 (2011). [CrossRef] [PubMed]
  10. S. C. Kanick, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Method to quantitatively estimate wavelength-dependent scattering properties from multidiameter single fiber reflectance spectra measured in a turbid medium,” Opt. Lett.36, 2997–2999 (2011). [CrossRef] [PubMed]
  11. U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of tissue scattering properties using multi-diameter single fiber reflectance spectroscopy: in silico sensitivity analysis,” Biomed. Opt. Express2, 3150–3166 (2011). [CrossRef] [PubMed]
  12. P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Collection efficiency of a single optical fiber in turbid media,” Appl. Opt.42, 3187–3197 (2003). [CrossRef] [PubMed]
  13. U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Quantification of the reduced scattering coefficient and phase function dependent parameter γ of turbid media using multi-diameter single fiber reflectance spectroscopy: experimental validation,” Opt. Lett.37, 1838–1840 (2012). [CrossRef] [PubMed]
  14. A. Ishimaru, Wave Propagation and Scattering in Random Media: Multiple scattering, turbulence, rough surfaces and remote sensing, v. 2 (Academic Press, 1978). [PubMed]
  15. J. D. Rogers, İ. R. Çapoğlu, and V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett.34, 1891–1893 (2009). [CrossRef] [PubMed]
  16. S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Semi-empirical model of the effect of scattering on single fiber fluorescence intensity measured on a turbid medium,” Biomed. Opt. Express3, 137–152 (2012). [CrossRef] [PubMed]
  17. S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Extraction of intrinsic fluorescence from single fiber fluorescence measurements on a turbid medium,” Opt. Lett.37, 948–950 (2012). [CrossRef] [PubMed]
  18. R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” JBO13, 010502 (2008). [CrossRef]
  19. Y. Ti and W.-C. Lin, “Effects of probe contact pressure on in vivo optical spectroscopy,” Opt. Express16, 4250–4262 (2008). [CrossRef] [PubMed]
  20. L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” JBO16, 011012 (2011). [CrossRef]
  21. J. A. Udovich, N. D. Kirkpatrick, A. Kano, A. Tanbakuchi, U. Utzinger, and A. F. Gmitro, “Spectral background and transmission characteristics of fiber optic imaging bundles,” Appl. Opt.47, 4560–4568 (2008). [CrossRef] [PubMed]
  22. S. C. Kanick, H. J. C. M. Sterenborg, and A. Amelink, “Empirical model of the photon path length for a single fiber reflectance spectroscopy device,” Opt. Express17, 860–871 (2009). [CrossRef] [PubMed]
  23. S. C. Kanick, V. Krishnaswamy, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, A. Amelink, and B. W. Pogue, “Scattering phase function spectrum makes reflectance spectrum measured from intralipid phantoms and tissue sensitive to the device detection geometry,” Biomed. Opt. Express3, 1086–1100 (2012). [CrossRef] [PubMed]
  24. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26, 2166–2185 (1990). [CrossRef]
  25. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: Applications to human brain,” Appl. Opt.38, 4939–4950 (1999). [CrossRef]
  26. E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” JBO11, 064026 (2006). [CrossRef]
  27. S. Inoué, “Studies on depolarization of light at microscope lens surfaces. I. The origin of stray light by rotation at lens surfaces.” Exp. Cell Res.3, 199–208 (1952). [CrossRef]
  28. M. Shribak, S. Inoué, and R. Oldenbourg, “Polarization aberrations caused by differential transmission and phase shift in high-numerical-aperture lenses: theory, measurement, and rectification,” Opt. Eng.41, 943–954 (2002). [CrossRef]
  29. R. Jukaitis and T. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning19, 15–19 (1997).
  30. C. Liang, M. Descour, K.-B. Sung, and R. Richards-Kortum, “Fiber confocal reflectance microscope (FCRM) for in-vivo imaging,” Opt. Express9, 821–830 (2001). [CrossRef] [PubMed]
  31. J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun.188, 267–273 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited