OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 10 — Oct. 1, 2012
  • pp: 2465–2470

Optical stirring in a droplet cell bioreactor

Murat Muradoglu, Thuong Le, Chun Yat Lau, Oi Wah Liew, and Tuck Wah Ng  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 10, pp. 2465-2470 (2012)
http://dx.doi.org/10.1364/BOE.3.002465


View Full Text Article

Enhanced HTML    Acrobat PDF (1170 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the context of a bioreactor, cells are sensitive to cues from other cells and mechanical stimuli from movement. The ability to provide the latter in a discrete fluidic system presents a significant challenge. From a prior finding that the location of the focus of a laser below particles relative to the beam axis producing a pushing effect in a predominant lateral sense, we advance an approach here that generates a gentle and tunable stirring effect. Computer simulation studies show that we are able to characterize this effect from the parameters that govern the optical forces and the movement of the particles. Experimental results with polystyrene microbeads and red blood cells confirm the notions from the simulations.

© 2012 OSA

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation

ToC Category:
Ophthalmology Applications

History
Original Manuscript: June 6, 2012
Revised Manuscript: July 29, 2012
Manuscript Accepted: August 24, 2012
Published: September 12, 2012

Citation
Murat Muradoglu, Thuong Le, Chun Yat Lau, Oi Wah Liew, and Tuck Wah Ng, "Optical stirring in a droplet cell bioreactor," Biomed. Opt. Express 3, 2465-2470 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-10-2465


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Chen, Z. Yu, L. Zhang, and G. Chen, “Microfluidic bioreactors for highly efficient proteolysis,” Curr. Chem. Biol.3(3), 291–301 (2009). [CrossRef]
  2. H. N. Vu, Y. Li, M. Casali, D. Irimia, Z. Megeed, and M. L. Yarmush, “A microfluidic bioreactor for increased active retrovirus output,” Lab Chip8(1), 75–80 (2008). [CrossRef] [PubMed]
  3. E. Figallo, C. Cannizzaro, S. Gerecht, J. A. Burdick, R. Langer, N. Elvassore, and G. Vunjak-Novakovic, “Micro-bioreactor array for controlling cellular microenvironments,” Lab Chip7(6), 710–719 (2007). [CrossRef] [PubMed]
  4. M. He, J. S. Edgar, G. D. M. Jeffries, R. M. Lorenz, J. P. Shelby, and D. T. Chiu, “Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets,” Anal. Chem.77(6), 1539–1544 (2005). [CrossRef] [PubMed]
  5. S. Daniel, M. K. Chaudhury, and P. G. de Gennes, “Vibration-actuated drop motion on surfaces for batch microfluidic processes,” Langmuir21(9), 4240–4248 (2005). [CrossRef] [PubMed]
  6. H. Y. Tan, T. W. Ng, A. Neild, and O. W. Liew, “Point spread function effect in image-based fluorescent microplate detection,” Anal. Biochem.397(2), 256–258 (2010). [CrossRef] [PubMed]
  7. J. K. K. Lye, T. W. Ng, and W. Y. L. Ling, “Discrete microfluidics transfer across capillaries using liquid bridge stability,” J. Appl. Phys.110(10), 104509 (2011). [CrossRef]
  8. J. J. Zhong, K. Fujiyama, T. Seki, and T. Yoshida, “A quantitative analysis of shear effects on cell suspension and cell culture of perilla frutescens in bioreactors,” Biotechnol. Bioeng.44(5), 649–654 (1994). [CrossRef] [PubMed]
  9. W. Y. Sim, S. W. Park, S. H. Park, B. H. Min, S. R. Park, and S. S. Yang, “A pneumatic micro cell chip for the differentiation of human mesenchymal stem cells under mechanical stimulation,” Lab Chip7(12), 1775–1782 (2007). [CrossRef] [PubMed]
  10. A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron.6(6), 841–856 (2000). [CrossRef]
  11. T. Iwaki, “Effect of internal flow on the photophoresis of a micron-sized liquid droplet,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(6), 066315 (2010). [CrossRef] [PubMed]
  12. A. Vogel, V. Horneffer, K. Lorenz, N. Linz, G. Hüttmann, and A. Gebert, “Principles of laser microdissection and catapulting of histologic specimens and live cells,” Methods Cell Biol.82, 153–205 (2007). [CrossRef] [PubMed]
  13. A. Siddiqi, T. W. Ng, and A. Neild, “Specific collection of adherent cells using laser release in a droplet-driven capillary cell,” J. Biomed. Opt.15(6), 065003 (2010). [CrossRef] [PubMed]
  14. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986). [CrossRef] [PubMed]
  15. K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption,” Opt. Lett.21(14), 1090–1092 (1996). [CrossRef] [PubMed]
  16. U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.78(2), 021910 (2008). [CrossRef] [PubMed]
  17. M. Muradoglu, W. S. Y. Chiu, and T. W. Ng, “Optical force lateral push-pulling using focus positioning,” J. Opt. Soc. Am. B29(4), 874–880 (2012). [CrossRef]
  18. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt.9(8), S196–S203 (2007). [CrossRef]
  19. B. H. P. Cheong, V. Diep, T. W. Ng, and O. W. Liew, “Transparency-based microplates for fluorescence quantification,” Anal. Biochem.422(1), 39–45 (2012). [CrossRef] [PubMed]
  20. H. Li, J. R. Friend, and L. Y. Yeo, “Microfluidic colloidal island formation and erasure induced by surface acoustic wave radiation,” Phys. Rev. Lett.101(8), 084502 (2008). [CrossRef] [PubMed]
  21. J. Whitehill, A. Neild, T. W. Ng, and M. Stokes, “Collection of suspended particles in a drop using low frequency vibration,” Appl. Phys. Lett.96(5), 053501 (2010). [CrossRef]
  22. H. Xia, J. Wang, Y. Tian, Q. D. Chen, X. B. Du, Y. L. Zhang, Y. He, and H. B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. (Deerfield Beach Fla.)22(29), 3204–3207 (2010). [CrossRef] [PubMed]
  23. B. Weiss, W. Hilber, R. Holly, P. Gittler, B. Jakoby, and K. Hingerl, “Dielectrophoretic particle dynamics in alternative-current electro-osmotic micropumps,” Appl. Phys. Lett.92(18), 184101 (2008). [CrossRef]
  24. J. A. King and W. M. Miller, “Bioreactor development for stem cell expansion and controlled differentiation,” Curr. Opin. Chem. Biol.11(4), 394–398 (2007). [CrossRef] [PubMed]
  25. N. K. Inamdar, L. G. Griffith, and J. T. Borenstein, “Transport and shear in a microfluidic membrane bilayer device for cell culture,” Biomicrofluidics5(2), 022213 (2011). [CrossRef] [PubMed]
  26. C. M. Potter, M. H. Lundberg, L. S. Harrington, C. M. Warboys, T. D. Warner, R. E. Berson, A. V. Moshkov, J. Gorelik, P. D. Weinberg, and J. A. Mitchell, “Role of shear stress in endothelial cell morphology and expression of cyclooxygenase isoforms,” Arterioscler. Thromb. Vasc. Biol.31(2), 384–391 (2011). [CrossRef] [PubMed]
  27. K. Yamamoto, T. Sokabe, T. Watabe, K. Miyazono, J. K. Yamashita, S. Obi, N. Ohura, A. Matsushita, A. Kamiya, and J. Ando, “Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro,” Am. J. Physiol. Heart Circ. Physiol.288(4), H1915–H1924 (2005). [CrossRef] [PubMed]
  28. J. R. Glossop and S. H. Cartmell, “Effect of fluid flow-induced shear stress on human mesenchymal stem cells: differential gene expression of IL1B and MAP3K8 in MAPK signaling,” Gene Expr. Patterns9(5), 381–388 (2009). [CrossRef] [PubMed]
  29. Z. Yang, W. H. Xia, Y. Y. Zhang, S. Y. Xu, X. Liu, X. Y. Zhang, B. B. Yu, Y. X. Qiu, and J. Tao, “Shear stress-induced activation of Tie2-dependent signaling pathway enhances reendothelialization capacity of early endothelial progenitor cells,” J. Mol. Cell. Cardiol.52(5), 1155–1163 (2012). [CrossRef] [PubMed]
  30. M. Morga-Ramírez, M. T. Collados-Larumbe, K. E. Johnson, M. J. Rivas-Arreola, L. M. Carrillo-Cocom, and M. M. Álvarez, “Hydrodynamic conditions induce changes in secretion level and glycosylation patterns of Von Willebrand factor (vWF) in endothelial cells,” J. Biosci. Bioeng.109(4), 400–406 (2010). [CrossRef] [PubMed]
  31. Y. Ban, Y. Y. Wu, T. Yu, N. Geng, Y. Y. Wang, X. G. Liu, and P. Gong, “Response of osteoblasts to low fluid shear stress is time dependent,” Tissue Cell43(5), 311–317 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Supplementary Material


» Media 1: MOV (5087 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited