OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 10 — Oct. 1, 2012
  • pp: 2471–2488

In vivo human crystalline lens topography

Sergio Ortiz, Pablo Pérez-Merino, Enrique Gambra, Alberto de Castro, and Susana Marcos  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 10, pp. 2471-2488 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2316 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Custom high-resolution high-speed anterior segment spectral domain optical coherence tomography (OCT) was used to characterize three-dimensionally (3-D) the human crystalline lens in vivo. The system was provided with custom algorithms for denoising and segmentation of the images, as well as for fan (scanning) and optical (refraction) distortion correction, to provide fully quantitative images of the anterior and posterior crystalline lens surfaces. The method was tested on an artificial eye with known surfaces geometry and on a human lens in vitro, and demonstrated on three human lenses in vivo. Not correcting for distortion overestimated the anterior lens radius by 25% and the posterior lens radius by more than 65%. In vivo lens surfaces were fitted by biconicoids and Zernike polynomials after distortion correction. The anterior lens radii of curvature ranged from 10.27 to 14.14 mm, and the posterior lens radii of curvature ranged from 6.12 to 7.54 mm. Surface asphericities ranged from −0.04 to −1.96. The lens surfaces were well fitted by quadrics (with variation smaller than 2%, for 5-mm pupils), with low amounts of high order terms. Surface lens astigmatism was significant, with the anterior lens typically showing horizontal astigmatism ( Z 2 2 ranging from −11 to −1 µm) and the posterior lens showing vertical astigmatism ( Z 2 2 ranging from 6 to 10 µm).

© 2012 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(110.6880) Imaging systems : Three-dimensional image acquisition
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure
(330.7327) Vision, color, and visual optics : Visual optics, ophthalmic instrumentation

ToC Category:
Ophthalmology Applications

Original Manuscript: June 7, 2012
Revised Manuscript: July 26, 2012
Manuscript Accepted: August 24, 2012
Published: September 12, 2012

Sergio Ortiz, Pablo Pérez-Merino, Enrique Gambra, Alberto de Castro, and Susana Marcos, "In vivo human crystalline lens topography," Biomed. Opt. Express 3, 2471-2488 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Kiely, G. Smith, and L. Carney, “The mean shape of the human cornea,” Opt. Acta (Lond.)29(8), 1027–1040 (1982). [CrossRef]
  2. J. Schwiegerling, J. E. Greivenkamp, and J. M. Miller, “Representation of videokeratoscopic height data with Zernike polynomials,” J. Opt. Soc. Am. A12(10), 2105–2113 (1995). [CrossRef] [PubMed]
  3. M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand.80(4), 379–383 (2002). [CrossRef] [PubMed]
  4. A. Gullstrand, “Appendices to Part I,” in Helmholtz's Treatise on Physiological Optics (Optical Society of America, Rochester, NY, 1924), pp. 350–358.
  5. H. Helmholtz, “Ueber die accommodation des auges,” Arch. Ophthal.1, 1–74 (1855).
  6. A. Glasser and M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res.38(2), 209–229 (1998). [CrossRef] [PubMed]
  7. A. Glasser and P. L. Kaufman, “The mechanism of accommodation in primates,” Ophthalmology106(5), 863–872 (1999). [CrossRef] [PubMed]
  8. G. Smith, B. K. Pierscionek, and D. A. Atchison, “The optical modelling of the human lens,” Ophthalmic Physiol. Opt.11(4), 359–369 (1991). [CrossRef] [PubMed]
  9. L. F. Garner and M. K. Yap, “Changes in ocular dimensions and refraction with accommodation,” Ophthalmic Physiol. Opt.17(1), 12–17 (1997). [CrossRef] [PubMed]
  10. L. F. Garner, “Calculation of the radii of curvature of the crystalline lens surfaces,” Ophthalmic Physiol. Opt.17(1), 75–80 (1997). [CrossRef] [PubMed]
  11. A. Glasser and M. C. W. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res.39(11), 1991–2015 (1999). [CrossRef] [PubMed]
  12. F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res.78(1), 39–51 (2004). [CrossRef] [PubMed]
  13. A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res.46(6-7), 1002–1009 (2006). [CrossRef] [PubMed]
  14. Y. Sakamoto, K. Sasaki, Y. Nakamura, and N. Watanabe, “Reproducibility of data obtained by a newly developed anterior eye segment analysis system, EAS-1000,” Ophthalmic Res.24(Suppl 1), 10–20 (1992). [CrossRef] [PubMed]
  15. C. A. Cook and J. F. Koretz, “Methods to obtain quantitative parametric descriptions of the optical surfaces of the human crystalline lens from Scheimpflug slit-lamp images. I. Image processing methods,” J. Opt. Soc. Am. A15(6), 1473–1485 (1998). [CrossRef] [PubMed]
  16. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res.41(14), 1867–1877 (2001). [CrossRef] [PubMed]
  17. M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci.78(6), 411–416 (2001). [CrossRef] [PubMed]
  18. M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res.45(1), 117–132 (2005). [CrossRef] [PubMed]
  19. D. A. Goss, H. G. Van Veen, B. B. Rainey, and B. Feng, “Ocular components measured by keratometry, phakometry, and ultrasonography in emmetropic and myopic optometry students,” Optom. Vis. Sci.74(7), 489–495 (1997). [CrossRef] [PubMed]
  20. P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis.6(10), 5 (2006). [CrossRef] [PubMed]
  21. P. Rosales and S. Marcos, “Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements,” J. Opt. Soc. Am. A23(3), 509–520 (2006). [CrossRef] [PubMed]
  22. P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vis.8(1), 18, 1–12 (2008). [CrossRef] [PubMed]
  23. J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A21(3), 346–354 (2004). [CrossRef] [PubMed]
  24. P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg.25(5), 421–428 (2009). [CrossRef] [PubMed]
  25. A. S. Vilupuru and A. Glasser, “Dynamic accommodative changes in rhesus monkey eyes assessed with A-scan ultrasound biometry,” Optom. Vis. Sci.80(5), 383–394 (2003). [CrossRef] [PubMed]
  26. C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res.45(18), 2352–2366 (2005). [CrossRef] [PubMed]
  27. E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. Kuijer, R. G. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci.50(1), 281–289 (2009). [CrossRef] [PubMed]
  28. S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis.11(3), 19 (2011). [CrossRef] [PubMed]
  29. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  30. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009). [CrossRef] [PubMed]
  31. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009). [CrossRef] [PubMed]
  32. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Three-dimensional ray tracing on Delaunay-based reconstructed surfaces,” Appl. Opt.48(20), 3886–3893 (2009). [CrossRef] [PubMed]
  33. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt.48(35), 6708–6715 (2009). [CrossRef] [PubMed]
  34. M. C. M. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt.12(6), 064023 (2007). [CrossRef] [PubMed]
  35. R. Yadav, K. Ahmad, and G. Yoon, “Scanning system design for large scan depth anterior segment optical coherence tomography,” Opt. Lett.35(11), 1774–1776 (2010). [CrossRef] [PubMed]
  36. M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010). [CrossRef] [PubMed]
  37. S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008). [CrossRef] [PubMed]
  38. E. Kim, K. Ehrmann, S. Uhlhorn, D. Borja, E. Arrieta-Quintero, and J. M. Parel, “Semiautomated analysis of optical coherence tomography crystalline lens images under simulated accommodation,” J. Biomed. Opt.16(5), 056003 (2011). [CrossRef] [PubMed]
  39. B. M. Maceo, F. Manns, D. Borja, D. Nankivil, S. Uhlhorn, E. Arrieta, A. Ho, R. C. Augusteyn, and J. M. Parel, “Contribution of the crystalline lens gradient refractive index to the accommodation amplitude in non-human primates: in vitro studies,” J. Vis.11(13), 23 (2011). [CrossRef] [PubMed]
  40. A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express18(21), 21905–21917 (2010). [CrossRef] [PubMed]
  41. D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J. M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express1(5), 1331–1340 (2010). [CrossRef] [PubMed]
  42. A. de Castro, S. Barbero, S. Ortiz, and S. Marcos, “Accuracy of the reconstruction of the crystalline lens gradient index with optimization methods from ray tracing and Optical Coherence Tomography data,” Opt. Express19(20), 19265–19279 (2011). [CrossRef] [PubMed]
  43. A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the Gradient Index profile in human crystalline lenses,” J. Mod. Opt.58(19-20), 1781–1787 (2011). [CrossRef] [PubMed]
  44. D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci.89(5), E709–E718 (2012). [CrossRef] [PubMed]
  45. S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express2(12), 3232–3247 (2011). [CrossRef] [PubMed]
  46. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express18(3), 2782–2796 (2010). [CrossRef] [PubMed]
  47. M. Zhao, A. N. Kuo, and J. A. Izatt, “3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea,” Opt. Express18(9), 8923–8936 (2010). [CrossRef] [PubMed]
  48. K. Karnowski, B. J. Kaluzny, M. Szkulmowski, M. Gora, and M. Wojtkowski, “Corneal topography with high-speed swept source OCT in clinical examination,” Biomed. Opt. Express2(9), 2709–2720 (2011). [CrossRef] [PubMed]
  49. S. Ortiz, P. Pérez-Merino, N. Alejandre, E. Gambra, I. Jimenez-Alfaro, and S. Marcos, “Quantitative OCT-based corneal topography in keratoconus with intracorneal ring segments,” Biomed. Opt. Express3(5), 814–824 (2012). [CrossRef] [PubMed]
  50. A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study,” J. Cataract Refract. Surg.33(3), 418–429 (2007). [CrossRef] [PubMed]
  51. H. Farid and E. P. Simoncelli, “Differentiation of discrete multidimensional signals,” IEEE Trans. Image Process.13(4), 496–508 (2004). [CrossRef] [PubMed]
  52. Y. Yang, K. Thompson, and S. A. Burns, “Pupil location under mesopic, photopic, and pharmacologically dilated conditions,” Invest. Ophthalmol. Vis. Sci.43(7), 2508–2512 (2002). [PubMed]
  53. T. Möller and J. F. Hughes, “Efficiently building a matrix to rotate one vector to another,” J Graphics Tools4(4), 1–4 (1999). [CrossRef]
  54. H. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modelling,” J. Opt. Soc. Am. A14(8), 1684–1695 (1997). [CrossRef]
  55. A. Pérez-Escudero, C. Dorronsoro, and S. Marcos, “Correlation between radius and asphericity in surfaces fitted by conics,” J. Opt. Soc. Am. A27(7), 1541–1548 (2010). [CrossRef] [PubMed]
  56. J. Birkenfeld, A. de Castro, S. Ortiz, P. Pérez-Merino, E. Gambra, and S. Marcos, “Three-dimensional reconstruction of the isolated human crystalline lens gradient index distribution,” Invest. Ophthalmol. Vis. Sci.52, E-Abstract 3404 (2011).
  57. P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A19(1), 137–143 (2002). [CrossRef] [PubMed]
  58. S. Barbero, S. Marcos, and J. Merayo-Lloves, “Corneal and total optical aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg.28(9), 1594–1600 (2002). [CrossRef] [PubMed]
  59. J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis.4(4), 2 (2004). [CrossRef] [PubMed]
  60. S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism,” Vision Res.48(1), 70–79 (2008). [CrossRef] [PubMed]
  61. E. Berrio, J. Tabernero, and P. Artal, “Optical aberrations and alignment of the eye with age,” J. Vis. 10(14), 34 (2010).
  62. A. Roorda and A. Glasser, “Wave aberrations of the isolated crystalline lens,” J. Vis.4(4), 1 (2004). [CrossRef] [PubMed]
  63. E. Acosta, J. M. Bueno, C. Schwarz, and P. Artal, “Relationship between wave aberrations and histological features in ex vivo porcine crystalline lenses,” J. Biomed. Opt.15(5), 055001 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (478 KB)     
» Media 2: MOV (3647 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited