OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 10 — Oct. 1, 2012
  • pp: 2489–2499

Fluorescent labeling of Acanthamoeba assessed in situ from corneal sectioned microscopy

Susana Marcos, Jose Requejo-Isidro, Jesus Merayo-Lloves, A. Ulises Acuña, Valentin Hornillos, Eugenia Carrillo, Pablo Pérez-Merino, Susana del Olmo-Aguado, Carmen del Aguila, Francisco Amat-Guerri, and Luis Rivas  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 10, pp. 2489-2499 (2012)
http://dx.doi.org/10.1364/BOE.3.002489


View Full Text Article

Enhanced HTML    Acrobat PDF (1502 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Acanthamoeba keratitis is a serious pathogenic corneal disease, with challenging diagnosis. Standard diagnostic methods include corneal biopsy (involving cell culture) and in vivo reflection corneal microscopy (in which the visualization of the pathogen is challenged by the presence of multiple reflectance corneal structures). We present a new imaging method based on fluorescence sectioned microscopy for visualization of Acanthamoeba. A fluorescent marker (MT-11-BDP), composed by a fluorescent group (BODIPY) inserted in miltefosine (a therapeutic agent against Acanthamoeba), was developed. A custom-developed fluorescent structured illumination sectioned corneal microscope (excitation wavelength: 488 nm; axial/lateral resolution: 2.6 μm/0.4-0.6 μm) was used to image intact enucleated rabbit eyes, injected with a solution of stained Acanthamoeba in the stroma. Fluorescent sectioned microscopic images of intact enucleated rabbit eyes revealed stained Acanthamoeba trophozoites within the stroma, easily identified by the contrasted fluorescent emission, size and shape. Control experiments show that the fluorescent maker is not internalized by corneal cells, making the developed marker specific to the pathogen. Fluorescent sectioned microscopy shows potential for specific diagnosis of Acanthamoeba keratitis. Corneal confocal microscopy, provided with a fluorescent channel, could be largely improved in specificity and sensitivity in combination with specific fluorescent marking.

© 2012 OSA

OCIS Codes
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4470) Medical optics and biotechnology : Ophthalmology
(180.0180) Microscopy : Microscopy

ToC Category:
Ophthalmology Applications

History
Original Manuscript: June 11, 2012
Revised Manuscript: July 31, 2012
Manuscript Accepted: July 31, 2012
Published: September 12, 2012

Citation
Susana Marcos, Jose Requejo-Isidro, Jesus Merayo-Lloves, A. Ulises Acuña, Valentin Hornillos, Eugenia Carrillo, Pablo Pérez-Merino, Susana del Olmo-Aguado, Carmen del Aguila, Francisco Amat-Guerri, and Luis Rivas, "Fluorescent labeling of Acanthamoeba assessed in situ from corneal sectioned microscopy," Biomed. Opt. Express 3, 2489-2499 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-10-2489


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Auran, M. B. Starr, and F. A. Jakobiec, “Acanthamoeba keratitis. A review of the literature,” Cornea6(1), 2–26 (1987). [CrossRef] [PubMed]
  2. J. Y. Niederkorn, H. Alizadeh, H. Leher, and J. P. McCulley, “The pathogenesis of Acanthamoeba keratitis,” Microbes Infect.1(6), 437–443 (1999). [CrossRef] [PubMed]
  3. Z. A. Polat, S. Ozcelik, A. Vural, E. Yildiz, and A. Cetin, “Clinical and histologic evaluations of experimental Acanthamoeba keratitis,” Parasitol. Res.101(6), 1621–1625 (2007). [CrossRef] [PubMed]
  4. D. Kovacević, T. Misljenović, N. Misljenović, M. Mikulicić, and D. Dabeska-Novkovski, “Acanthamoeba keratitis—importance of the early diagnosis,” Coll. Antropol.32(Suppl 2), 221–224 (2008). [PubMed]
  5. A. S. Bacon, J. K. Dart, L. A. Ficker, M. M. Matheson, and P. Wright, “Acanthamoeba keratitis. The value of early diagnosis,” Ophthalmology100(8), 1238–1243 (1993). [PubMed]
  6. G. Pasricha, S. Sharma, P. Garg, and R. K. Aggarwal, “Use of 18S rRNA gene-based PCR assay for diagnosis of Acanthamoeba keratitis in non-contact lens wearers in India,” J. Clin. Microbiol.41(7), 3206–3211 (2003). [CrossRef] [PubMed]
  7. O. Zamfir, H. Yera, T. Bourcier, L. Batellier, J. Dupouy-Camet, C. Tourte-Schaeffer, and C. Chaumeil, “Diagnostic par PCR des kératites à Acanthamoeba spp. [Diagnosis of Acanthamoeba spp. keratitis with PCR],” J. Fr. Ophtalmol.29(9), 1034–1040 (2006). [CrossRef] [PubMed]
  8. P. P. Thompson, R. P. Kowalski, R. M. Q. Shanks, and Y. J. Gordon, “Validation of real-time PCR for laboratory diagnosis of Acanthamoeba keratitis,” J. Clin. Microbiol.46(10), 3232–3236 (2008). [CrossRef] [PubMed]
  9. M. Niyyati, J. Lorenzo-Morales, M. Mohebali, S. Rezaie, F. Rahimi, Z. Babaei, C. M. Martín-Navarro, S. Farnia, B. Valladares, and M. Rezaeian, “Comparison of a PCR-based method with culture and direct examination for diagnosis of Acanthamoeba keratitis,” Iran. J. Parasitol.4, 38–43 (2009).
  10. Z. Xuejun, L. Xiaoyan, S. Xiaoji, X. Guoxing, and H. Jianzhang, “Application of 28S rDNA PCR technique in the laboratory diagnosis of Acanthamoeba keratitis in the clinical,” Guoji Yanke Zazhi9, 715–718 (2009).
  11. W. D. Mathers, S. E. Nelson, J. L. Lane, M. E. Wilson, R. C. Allen, and R. Folberg, “Confirmation of confocal microscopy diagnosis of Acanthamoeba keratitis using polymerase chain reaction analysis,” Arch. Ophthalmol.118(2), 178–183 (2000). [CrossRef] [PubMed]
  12. D. R. Pfister, J. D. Cameron, J. H. Krachmer, and E. J. Holland, “Confocal microscopy findings of Acanthamoeba keratitis,” Am. J. Ophthalmol.121(2), 119–128 (1996). [PubMed]
  13. K. Winchester, W. D. Mathers, J. E. Sutphin, and T. E. Daley, “Diagnosis of Acanthamoeba keratitis in vivo with confocal microscopy,” Cornea14(1), 10–17 (1995). [CrossRef] [PubMed]
  14. J. D. Auran, M. B. Starr, C. J. Koester, and V. J. LaBombardi, “In vivo scanning slit confocal microscopy of Acanthamoeba keratitis. A case report,” Cornea13(2), 183–185 (1994). [CrossRef] [PubMed]
  15. P. K. Vaddavalli, P. Garg, S. Sharma, V. S. Sangwan, G. N. Rao, and R. Thomas, “Role of confocal microscopy in the diagnosis of fungal and Acanthamoeba keratitis,” Ophthalmology118(1), 29–35 (2011). [CrossRef] [PubMed]
  16. A. Shiraishi, T. Uno, N. Oka, Y. Hara, M. Yamaguchi, and Y. Ohashi, “In vivo and in vitro laser confocal microscopy to diagnose Acanthamoeba keratitis,” Cornea29(8), 861–865 (2010). [CrossRef] [PubMed]
  17. E. Nakano, M. Oliveira, W. Portellinha, D. de Freitas, and K. Nakano, “Confocal microscopy in early diagnosis of Acanthamoeba keratitis,” J. Refract. Surg.20(5Suppl), S737–S740 (2004). [PubMed]
  18. S. Hauber, H. Parkes, R. Siddiqui, and N. A. Khan, “The use of high-resolution ¹H nuclear magnetic resonance (NMR) spectroscopy in the clinical diagnosis of Acanthamoeba,” Parasitol. Res.109(6), 1661–1669 (2011). [CrossRef] [PubMed]
  19. H. Y. Tan, Y. Sun, W. Lo, S. W. Teng, R. J. Wu, S. H. Jee, W. C. Lin, C. H. Hsiao, H. C. Lin, Y. F. Chen, D. H. Ma, S. C. Huang, S. J. Lin, and C. Y. Dong, “Multiphoton fluorescence and second harmonic generation microscopy for imaging infectious keratitis,” J. Biomed. Opt.12(2), 024013 (2007). [CrossRef] [PubMed]
  20. N. Morishige, W. M. Petroll, T. Nishida, M. C. Kenney, and J. V. Jester, “Noninvasive corneal stromal collagen imaging using two-photon-generated second-harmonic signals,” J. Cataract Refract. Surg.32(11), 1784–1791 (2006). [CrossRef] [PubMed]
  21. J. M. Bueno, E. J. Gualda, A. Giakoumaki, P. Pérez-Merino, S. Marcos, and P. Artal, “Multiphoton microscopy of ex vivo corneas after collagen cross-linking,” Invest. Ophthalmol. Vis. Sci.52(8), 5325–5331 (2011). [CrossRef] [PubMed]
  22. G. S. Visvesvara, H. Moura, and F. L. Schuster, “Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea,” FEMS Immunol. Med. Microbiol.50(1), 1–26 (2007). [CrossRef] [PubMed]
  23. T. W. Hahn, T. P. O’Brien, W. J. Sah, and J. H. Kim, “Acridine orange staining for rapid diagnosis of Acanthamoeba keratitis,” Jpn. J. Ophthalmol.42(2), 108–114 (1998). [CrossRef] [PubMed]
  24. K. R. Wilhelmus, M. S. Osato, R. L. Font, N. M. Robinson, and D. B. Jones, “Rapid diagnosis of Acanthamoeba keratitis using calcofluor white,” Arch. Ophthalmol.104(9), 1309–1312 (1986). [CrossRef] [PubMed]
  25. H. E. Grossniklaus, G. O. I. V. Waring, C. Akor, A. A. Castellano-Sanchez, and K. Bennett, “Evaluation of hematoxylin and eosin and special stains for the detection of acanthamoeba keratitis in penetrating keratoplasties,” Am. J. Ophthalmol.136(3), 520–526 (2003). [CrossRef] [PubMed]
  26. J. Walochnik, M. Duchêne, K. A. Seifert, A. Obwaller, T. Hottkowitz, G. Wiedermann, H. Eibl, and H. Aspöck, “Cytotoxic activities of alkylphosphocholines against clinical isolates of Acanthamoeba spp,” Antimicrob. Agents Chemother.46(3), 695–701 (2002). [CrossRef] [PubMed]
  27. V. Hornillos, E. Carrillo, L. Rivas, F. Amat-Guerri, and A. U. Acuña, “Synthesis of BODIPY-labeled alkylphosphocholines with leishmanicidal activity, as fluorescent analogues of miltefosine,” Bioorg. Med. Chem. Lett.18(24), 6336–6339 (2008). [CrossRef] [PubMed]
  28. M. Mrva, M. Garajová, M. Lukáč, and F. Ondriska, “Weak cytotoxic activity of miltefosine against clinical isolates of Acanthamoeba spp,” J. Parasitol.97(3), 538–540 (2011). [CrossRef] [PubMed]
  29. G. S. Visvesvara and W. Balamuth, “Comparative studies on related free-living and pathogenic amebae with special reference to Acanthamoeba,” J. Protozool.22(2), 245–256 (1975). [PubMed]
  30. M. Ren and X. Wu, “Evaluation of three different methods to establish animal models of Acanthamoeba keratitis,” Yonsei Med. J.51(1), 121–127 (2010). [CrossRef] [PubMed]
  31. M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett.22(24), 1905–1907 (1997). [CrossRef] [PubMed]
  32. J. Requejo-Isidro, “Application of fluorescence sectioned microscopy to the in-situ diagnosis Acanthamoeba spp. ocular infection,” presented at Focus on Microscopy, Krakow, Poland, Apr. 5–8, 2009.
  33. S. A. Klotz, C. C. Penn, G. J. Negvesky, and S. I. Butrus, “Fungal and parasitic infections of the eye,” Clin. Microbiol. Rev.13(4), 662–685 (2000). [CrossRef] [PubMed]
  34. M. M. Eissa, M. Z. El-Azzouni, E. I. Amer, and N. M. Baddour, “Miltefosine, a promising novel agent for schistosomiasis mansoni,” Int. J. Parasitol.41(2), 235–242 (2011). [CrossRef] [PubMed]
  35. D. Llull, L. Rivas, and E. García, “In vitro bactericidal activity of the antiprotozoal drug miltefosine against Streptococcus pneumoniae and other pathogenic streptococci,” Antimicrob. Agents Chemother.51(5), 1844–1848 (2007). [CrossRef] [PubMed]
  36. S. L. Croft, K. Seifert, and M. Duchêne, “Antiprotozoal activities of phospholipid analogues,” Mol. Biochem. Parasitol.126(2), 165–172 (2003). [CrossRef] [PubMed]
  37. F. J. Pérez-Victoria, M. P. Sánchez-Cañete, K. Seifert, S. L. Croft, S. Sundar, S. Castanys, and F. Gamarro, “Mechanisms of experimental resistance of Leishmania to miltefosine: Implications for clinical use,” Drug Resist. Updat.9(1-2), 26–39 (2006). [CrossRef] [PubMed]
  38. J. Stave, G. Zinser, G. Grümmer, and R. Guthoff, “Der modifizierte Heidelberg-Retina-Tomograph HRT. Erste Ergebnisse einer In-vivo-Darstellung von kornealen Strukturen [Modified Heidelberg retinal tomograph HRT. Initial results of in vivo presentation of corneal structures],” Ophthalmologe99(4), 276–280 (2002). [CrossRef] [PubMed]
  39. G. P. Mishra, M. Bagui, V. Tamboli, and A. K. Mitra, “Recent applications of liposomes in ophthalmic drug delivery,” J. Drug Deliv.2011, 863734 (2011). [CrossRef] [PubMed]
  40. Z. A. Polat, A. Obwaller, A. Vural, and J. Walochnik, “Efficacy of miltefosine for topical treatment of Acanthamoeba keratitis in Syrian hamsters,” Parasitol. Res.110(2), 515–520 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited