OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 10 — Oct. 1, 2012
  • pp: 2500–2509

Silica-coated super paramagnetic iron oxide nanoparticles (SPION) as biocompatible contrast agent in biomedical photoacoustics

Rudolf Alwi, Sergey Telenkov, Andreas Mandelis, Timothy Leshuk, Frank Gu, Sulayman Oladepo, and Kirk Michaelian  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 10, pp. 2500-2509 (2012)
http://dx.doi.org/10.1364/BOE.3.002500


View Full Text Article

Enhanced HTML    Acrobat PDF (2563 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this study, we report for the first time the use of silica-coated superparamagnetic iron oxide nanoparticles (SPION) as contrast agents in biomedical photoacoustic imaging. Using frequency-domain photoacoustic correlation (the photoacoustic radar), we investigated the effects of nanoparticle size, concentration and biological media (e.g. serum, sheep blood) on the photoacoustic response in turbid media. Maximum detection depth and the minimum measurable SPION concentration were determined experimentally. The nanoparticle-induced optical contrast ex vivo in dense muscular tissues (avian pectus and murine quadricept) was evaluated and the strong potential of silica-coated SPION as a possible photoacoustic contrast agents was demonstrated.

© 2012 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5120) Medical optics and biotechnology : Photoacoustic imaging
(160.4236) Materials : Nanomaterials

ToC Category:
Nanotechnology and Plasmonics

History
Original Manuscript: July 13, 2012
Revised Manuscript: August 28, 2012
Manuscript Accepted: September 11, 2012
Published: September 12, 2012

Citation
Rudolf Alwi, Sergey Telenkov, Andreas Mandelis, Timothy Leshuk, Frank Gu, Sulayman Oladepo, and Kirk Michaelian, "Silica-coated super paramagnetic iron oxide nanoparticles (SPION) as biocompatible contrast agent in biomedical photoacoustics," Biomed. Opt. Express 3, 2500-2509 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-10-2500


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Homan, J. Shah, S. Gomez, H. Gensler, A. Karpiouk, L. Brannon-Peppas, and S. Emelianov, “Silver nanosystems for photoacoustic imaging and image-guided therapy,” J. Biomed. Opt.15(2), 021316 (2010). [CrossRef] [PubMed]
  2. M. Pramanik, K. H. Song, M. Swierczewska, D. Green, B. Sitharaman, and L. V. Wang, “In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node,” Phys. Med. Biol.54(11), 3291–3301 (2009). [CrossRef] [PubMed]
  3. C. Ungureanu, A. Amelink, R. G. Rayavarapu, H. J. C. M. Sterenborg, S. Manohar, and T. G. C. van Leeuwen, “Differential pathlength spectroscopy for the quantitation of optical properties of gold nanoparticles,” ACS Nano4(7), 4081–4089 (2010). [CrossRef] [PubMed]
  4. S. J. Yoon, S. Mallidi, J. M. Tam, J. O. Tam, A. Murthy, K. P. Johnston, K. V. Sokolov, and S. Y. Emelianov, “Utility of biodegradable plasmonic nanoclusters in photoacoustic imaging,” Opt. Lett.35(22), 3751–3753 (2010). [CrossRef] [PubMed]
  5. J. Yao, K. Maslov, S. Hu, and L. V. Wang, “Evans blue dye-enhanced capillary-resolution photoacoustic microscopy in vivo,” J. Biomed. Opt.14(5), 054049 (2009). [CrossRef] [PubMed]
  6. C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano4(8), 4559–4564 (2010). [CrossRef] [PubMed]
  7. A. H. Green, J. R. Norris, J. Wang, Z. Xie, H. F. Zhang, and P. J. La Riviere, “In vitro testing of a protease-sensitive contrast agent for optoacoustic imaging,” J. Biomed. Opt.15(2), 021315 (2010). [CrossRef] [PubMed]
  8. L. M. Ricles, S. Y. Nam, K. Sokolov, S. Y. Emelianov, and L. J. Suggs, “Function of mesenchymal stem cells following loading of gold nanotracers,” Int. J. Nanomedicine6, 407–416 (2011). [CrossRef] [PubMed]
  9. M. Pramanik, M. Swierczewska, D. Green, B. Sitharaman, and L. V. Wang, “Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent,” J. Biomed. Opt.14(3), 034018 (2009). [CrossRef] [PubMed]
  10. K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat Commun3, 618 (2012). [CrossRef] [PubMed]
  11. A. Agarwal, X. Shao, J. R. Rajian, H. Zhang, D. L. Chamberland, N. A. Kotov, and X. Wang, “Dual-mode imaging with radiolabeled gold nanorods,” J. Biomed. Opt.16(5), 051307 (2011). [CrossRef] [PubMed]
  12. C. Jia, J. Xia, I. M. Pelivanov, C. H. Seo, X. Hu, Y. Jin, X. Gao, and M. O'Donnell, “Dynamic manipulation of magnetic contrast agents in photoacoustic imaging,” Proc. SPIE7899, 78991R, 78991R–6 (2011). [CrossRef]
  13. Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett.11(2), 348–354 (2011). [CrossRef] [PubMed]
  14. A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt.4(1), 36–46 (1999). [CrossRef]
  15. A. A. Oraevsky, Photoacoustic Imaging and Spectroscopy, 1st ed. (Taylor & Francis, 2008), Chap. 20.
  16. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003). [CrossRef]
  17. K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B110(39), 19220–19225 (2006). [CrossRef] [PubMed]
  18. A. S. Thakor, J. Jokerst, C. Zavaleta, T. F. Massoud, and S. S. Gambhir, “Gold nanoparticles: a revival in precious metal administration to patients,” Nano Lett.11(10), 4029–4036 (2011). [CrossRef] [PubMed]
  19. L. Wang, Photoacoustic Imaging and Spectroscopy (CRC Press, 2009), Chap. 30.
  20. J. B. Jackson and N. J. Halas, “Silver nanoshells: variations in morphologies and optical properties,” J. Phys. Chem. B105(14), 2743–2746 (2001). [CrossRef]
  21. V. K. Poon and A. Burd, “In vitro cytotoxity of silver: implication for clinical wound care,” Burns30(2), 140–147 (2004). [CrossRef] [PubMed]
  22. X. Chen, Nanoplatform-Based Molecular Imaging (John Willey & Sons, 2011), Chap. 12.2.2.
  23. T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system,” Radiology256(1), 102–110 (2010). [CrossRef] [PubMed]
  24. C. Kim, K. H. Song, F. Gao, and L. V. Wang, “Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats--volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging,” Radiology255(2), 442–450 (2010). [CrossRef] [PubMed]
  25. N. Kosaka, M. Mitsunaga, M. R. Longmire, P. L. Choyke, and H. Kobayashi, “Near infrared fluorescence-guided real-time endoscopic detection of peritoneal ovarian cancer nodules using intravenously injected indocyanine green,” Int. J. Cancer129(7), 1671–1677 (2011). [CrossRef] [PubMed]
  26. M. Qu, S. Mallidi, M. Mehrmohammadi, R. Truby, K. Homan, P. Joshi, Y. S. Chen, K. Sokolov, and S. Emelianov, “Magneto-photo-acoustic imaging,” Biomed. Opt. Express2(2), 385–396 (2011). [CrossRef] [PubMed]
  27. Y. Jin, C. Jia, S. W. Huang, M. O’Donnell, and X. Gao, “Multifunctional nanoparticles as coupled contrast agents,” Nat Commun1(4), 41 (2010). [CrossRef] [PubMed]
  28. R. Lawaczeck, M. Menzel, and H. Pietsch, “Superparamagnetic iron oxide nanoparticles: contrast media for magnetic resonance imaging,” Appl. Organomet. Chem.18(10), 506–513 (2004). [CrossRef]
  29. A. S. Teja and P. Koh, “Synthesis, properties, and applications of magnetic iron oxide nanoparticles,” Prog. Cryst. Growth Charact. Mater.55(1–2), 22–45 (2009). [CrossRef]
  30. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, and R. N. Muller, “Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications,” Chem. Rev.108(6), 2064–2110 (2008). [CrossRef] [PubMed]
  31. H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. Itty Ipe, M. G. Bawendi, and J. V. Frangioni, “Renal clearance of quantum dots,” Nat. Biotechnol.25(10), 1165–1170 (2007). [CrossRef] [PubMed]
  32. T. Neuberger, B. Schopf, H. Hofmann, M. Hofmann, and B. von Rechenberg, “Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system,” J. Magn. Magn. Mater.293(1), 483–496 (2005). [CrossRef]
  33. L. Brannon-Peppas and J. O. Blanchette, “Nanoparticle and targeted systems for cancer therapy,” Adv. Drug Deliv. Rev.56(11), 1649–1659 (2004). [CrossRef] [PubMed]
  34. R. Qiao, C. Yang, and M. Gao, “Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications,” J. Mater. Chem.19(35), 6274–6293 (2009). [CrossRef]
  35. J. E. Rosen, L. Chan, D.-B. Shieh, and F. X. Gu, “Iron oxide nanoparticles for targeted cancer imaging and diagnostics,” Nanomedicine8(3), 275–290 (2012). [CrossRef] [PubMed]
  36. X. Chen, Nanoplatform-Based Molecular Imaging (Wiley, 2011), Chap. 23.3.1.
  37. M. K. Yu, J. Park, Y. Y. Jeong, W. K. Moon, and S. Jon, “Integrin-targeting thermally cross-linked superparamagnetic iron oxide nanoparticles for combined cancer imaging and drug delivery,” Nanotechnology21(41), 415102 (2010). [CrossRef] [PubMed]
  38. A. Z. Wang, V. Bagalkot, C. C. Vasilliou, F. Gu, F. Alexis, L. Zhang, M. Shaikh, K. Yuet, M. J. Cima, R. Langer, P. W. Kantoff, N. H. Bander, S. Jon, and O. C. Farokhzad, “Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy,” ChemMedChem3(9), 1311–1315 (2008). [CrossRef] [PubMed]
  39. A. Kunzmann, B. Andersson, T. Thurnherr, H. Krug, A. Scheynius, and B. Fadeel, “Toxicology of engineered nanomaterials: focus on biocompatibility, biodistribution and biodegradation,” Biochim. Biophys. Acta1810(3), 361–373 (2011). [CrossRef] [PubMed]
  40. Y. Xu, Y. Qin, S. Palchoudhury, and Y. Bao, “Water-soluble iron oxide nanoparticles with high stability and selective surface functionality,” Langmuir27(14), 8990–8997 (2011). [CrossRef] [PubMed]
  41. N. R. Jana, C. Earhart, and J. Y. Ying, “Synthesis of water-soluble and functionalized nanoparticles by silica coating,” Chem. Mater.19(21), 5074–5082 (2007). [CrossRef]
  42. A. Guerrero-Martínez, J. Pérez-Juste, and L. M. Liz-Marzán, “Recent progress on silica coating of nanoparticles and related nanomaterials,” Adv. Mater. (Deerfield Beach Fla.)22(11), 1182–1195 (2010). [CrossRef] [PubMed]
  43. F. Šulek, M. Drofenik, M. Habulin, and Z. Knez, “Surface functionalization of silica-coated magnetic nanoparticles for covalent attachment of cholesterol oxidase,” J. Magn. Magn. Mater.322(2), 179–185 (2010). [CrossRef]
  44. S. Telenkov, A. Mandelis, B. Lashkari, and M. Forcht, “Frequency-domain photothermoacoustics: alternative imaging modality of biological tissues,” J. Appl. Phys.105(10), 102029 (2009). [CrossRef]
  45. American National Standards Institute, “American National Standard for Safe Use of Lasers, “ANSI Z136.1–2007 (ANSI, 2007).
  46. S. Telenkov and A. Mandelis, “Signal-to-noise analysis of biomedical photoacoustic measurements in time and frequency domains,” Rev. Sci. Instrum.81(12), 124901 (2010). [CrossRef] [PubMed]
  47. S. Telenkov, R. Alwi, A. Mandelis, and A. Worthington, “Frequency-domain photoacoustic phased array probe for biomedical imaging applications,” Opt. Lett.36(23), 4560–4562 (2011). [CrossRef] [PubMed]
  48. Y. S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emelianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express18(9), 8867–8878 (2010). [CrossRef] [PubMed]
  49. X. Xu, M. Ge, C. Wang, and J. Z. Jiang, “High temperature stable monodisperse superparamagnetic core-shell iron-oxide@SnO2 nanoparticles,” Appl. Phys. Lett.95(18), 183112 (2009). [CrossRef]
  50. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Clarendon, 1959), Chap. 9.
  51. S. A. Telenkov and A. Mandelis, “Photothermoacoustic imaging of biological tissues: maximum depth characterization comparison of time and frequency-domain measurements,” J. Biomed. Opt.14(4), 044025 (2009). [CrossRef] [PubMed]
  52. H. Han, A. Johnson, J. Kaczor, M. Kaur, A. Paszczynski, and Y. Qiang, “Silica coated magnetic nanoparticles for separation of nuclear acidic waste,” J. Appl. Phys.107(9), 09B520 (2010). [CrossRef]
  53. O. Baber, M. Jang, D. Barber, and K. Powers, “Amorphous silica coatings on magnetic nanoparticles enhance stability and reduce toxicity to in vitro BEAS-2B cells,” Inhal. Toxicol.23(9), 532–543 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited