OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 10 — Oct. 1, 2012
  • pp: 2550–2566

Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults

Christina Kolyva, Ilias Tachtsidis, Arnab Ghosh, Tracy Moroz, Chris E. Cooper, Martin Smith, and Clare E. Elwell  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 10, pp. 2550-2566 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2677 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using transcranial near-infrared spectroscopy (NIRS) to measure changes in the redox state of cerebral cytochrome c oxidase (Δ[oxCCO]) during functional activation in healthy adults is hampered by instrumentation and algorithm issues. This study reports the Δ[oxCCO] response measured in such a setting and investigates possible confounders of this measurement. Continuous frontal lobe NIRS measurements were collected from 11 healthy volunteers during a 6-minute anagram-solving task, using a hybrid optical spectrometer (pHOS) that combines multi-distance frequency and broadband components. Only data sets showing a hemodynamic response consistent with functional activation were interrogated for a Δ[oxCCO] response. Simultaneous systemic monitoring data were also available. Possible influences on the Δ[oxCCO] response were systematically investigated and there was no effect of: 1) wavelength range chosen for fitting the measured attenuation spectra; 2) constant or measured, with the pHOS in real-time, differential pathlength factor; 3) systemic hemodynamic changes during functional activation; 4) changes in optical scattering during functional activation. The Δ[oxCCO] response measured in the presence of functional activation was heterogeneous, with the majority of subjects showing significant increase in oxidation, but others having a decrease. We conclude that the heterogeneity in the Δ[oxCCO] response is physiological and not induced by confounding factors in the measurements.

© 2012 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.1610) Medical optics and biotechnology : Clinical applications
(170.5380) Medical optics and biotechnology : Physiology
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(300.6190) Spectroscopy : Spectrometers
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Spectroscopic Diagnostics

Original Manuscript: March 2, 2012
Revised Manuscript: May 10, 2012
Manuscript Accepted: June 30, 2012
Published: September 14, 2012

Christina Kolyva, Ilias Tachtsidis, Arnab Ghosh, Tracy Moroz, Chris E. Cooper, Martin Smith, and Clare E. Elwell, "Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults," Biomed. Opt. Express 3, 2550-2566 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Obrig and A. Villringer, “Beyond the visible--imaging the human brain with light,” J. Cereb. Blood Flow Metab.23(1), 1–18 (2003). [CrossRef] [PubMed]
  2. Y. Kakihana, A. Matsunaga, T. Yasuda, T. Imabayashi, Y. Kanmura, and M. Tamura, “Brain oxymetry in the operating room: current status and future directions with particular regard to cytochrome oxidase,” J. Biomed. Opt.13(3), 033001 (2008). [CrossRef] [PubMed]
  3. D. Highton, C. Elwell, and M. Smith, “Noninvasive cerebral oximetry: is there light at the end of the tunnel?” Curr. Opin. Anaesthesiol.23(5), 576–581 (2010). [CrossRef] [PubMed]
  4. M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007). [CrossRef] [PubMed]
  5. C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, and D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab.19(1), 27–38 (1999). [CrossRef] [PubMed]
  6. C. E. Cooper and R. Springett, “Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 669–676 (1997). [CrossRef] [PubMed]
  7. F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science198(4323), 1264–1267 (1977). [CrossRef] [PubMed]
  8. M. Banaji, “A generic model of electron transport in mitochondria,” J. Theor. Biol.243(4), 501–516 (2006). [CrossRef] [PubMed]
  9. M. Banaji, A. Mallet, C. E. Elwell, P. Nicholls, and C. E. Cooper, “A model of brain circulation and metabolism: NIRS signal changes during physiological challenges,” PLOS Comput. Biol.4(11), e1000212 (2008). [CrossRef] [PubMed]
  10. M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Changes in the attenuation of near infrared spectra by the healthy adult brain during hypoxaemia cannot be accounted for solely by changes in the concentrations of oxy- and deoxy-haemoglobin,” Adv. Exp. Med. Biol.614, 217–225 (2008). [CrossRef] [PubMed]
  11. K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations,” J. Biomed. Opt.7(1), 51–59 (2002). [CrossRef] [PubMed]
  12. K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage22(1), 109–119 (2004). [CrossRef] [PubMed]
  13. R. Springett, J. Newman, M. Cope, and D. T. Delpy, “Oxygen dependency and precision of cytochrome oxidase signal from full spectral NIRS of the piglet brain,” Am. J. Physiol. Heart Circ. Physiol.279(5), H2202–H2209 (2000). [PubMed]
  14. H. R. Heekeren, M. Kohl, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab.19(6), 592–603 (1999). [CrossRef] [PubMed]
  15. M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Increase in cerebral aerobic metabolism by normobaric hyperoxia after traumatic brain injury,” J. Neurosurg.109(3), 424–432 (2008). [CrossRef] [PubMed]
  16. M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt.12(2), 024002 (2007). [CrossRef] [PubMed]
  17. I. Tachtsidis, M. M. Tisdall, T. S. Leung, C. Pritchard, C. E. Cooper, M. Smith, and C. E. Elwell, “Relationship between brain tissue haemodynamics, oxygenation and metabolism in the healthy human adult brain during hyperoxia and hypercapnea,” Adv. Exp. Med. Biol.645, 315–320 (2009). [CrossRef] [PubMed]
  18. I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas.28(2), 199–211 (2007). [CrossRef] [PubMed]
  19. Y. Kakihana, A. Matsunaga, K. Tobo, S. Isowaki, M. Kawakami, I. Tsuneyoshi, Y. Kanmura, and M. Tamura, “Redox behavior of cytochrome oxidase and neurological prognosis in 66 patients who underwent thoracic aortic surgery,” Eur. J. Cardiothorac. Surg.21(3), 434–439 (2002). [CrossRef] [PubMed]
  20. A. D. McGown, H. Makker, C. Elwell, P. G. Al Rawi, A. Valipour, and S. G. Spiro, “Measurement of changes in cytochrome oxidase redox state during obstructive sleep apnea using near-infrared spectroscopy,” Sleep26(6), 710–716 (2003). [PubMed]
  21. I. Tachtsidis, L. Gao, T. S. Leung, M. Kohl-Bareis, C. E. Cooper, and C. E. Elwell, “A hybrid multi-distance phase and broadband spatially resolved spectrometer and algorithm for resolving absolute concentrations of chromophores in the near-infrared light spectrum,” Adv. Exp. Med. Biol.662, 169–175 (2010). [CrossRef] [PubMed]
  22. L. Aziz-Zadeh, J. T. Kaplan, and M. Iacoboni, “‘Aha!’: The neural correlates of verbal insight solutions,” Hum. Brain Mapp.30(3), 908–916 (2009). [CrossRef] [PubMed]
  23. N. M. Gregg, B. R. White, B. W. Zeff, A. J. Berger, and J. P. Culver, “Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography,” Front Neuroenergetics2, 14 (2010). [PubMed]
  24. I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol.645, 307–314 (2009). [CrossRef] [PubMed]
  25. L. Minati, I. U. Kress, E. Visani, N. Medford, and H. D. Critchley, “Intra- and extra-cranial effects of transient blood pressure changes on brain near-infrared spectroscopy (NIRS) measurements,” J. Neurosci. Methods197(2), 283–288 (2011). [CrossRef] [PubMed]
  26. T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage57(3), 991–1002 (2011). [CrossRef] [PubMed]
  27. I. Tachtsidis, T. S. Leung, L. Devoto, D. T. Delpy, and C. E. Elwell, “Measurement of frontal lobe functional activation and related systemic effects: a near-infrared spectroscopy investigation,” Adv. Exp. Med. Biol.614, 397–403 (2008). [CrossRef] [PubMed]
  28. I. Tachtsidis, T. S. Leung, M. M. Tisdall, P. Devendra, M. Smith, D. T. Delpy, and C. E. Elwell, “Investigation of frontal cortex, motor cortex and systemic haemodynamic changes during anagram solving,” Adv. Exp. Med. Biol.614, 21–28 (2008). [CrossRef] [PubMed]
  29. I. Tachtsidis, T. S. Leung, B. Tahir, C. E. Elwell, M. Kohl-Bareis, M. Gramer, and C. E. Cooper, “A hybrid multi-distance phase and broadband spatially resolved algorithm for resolving absolute concentrations of chromophores in the near-infrared light spectrum: application on to dynamic phantoms,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2008), paper BSuE76.
  30. L. Gao, C. E. Elwell, M. Kohl-Bareis, M. Gramer, C. E. Cooper, T. S. Leung, and I. Tachtsidis, “Effects of assuming constant optical scattering on haemoglobin concentration measurements using NIRS during a Valsalva manoeuvre,” Adv. Exp. Med. Biol.701, 15–20 (2011). [CrossRef] [PubMed]
  31. S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999). [CrossRef] [PubMed]
  32. E. R. Reilly, “EEG recording and operation of the apparatus,” in Electroencephalography: Basic Principles, Clinical Applications and Related Fields, E. Niedermeyer and F. H. L. Da Silva, eds. (Lippincott Williams and Wilkins, 2005), pp. 139–160.
  33. S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem.227(1), 54–68 (1995). [CrossRef] [PubMed]
  34. M. Essenpreis, C. E. Elwell, M. Cope, P. van der Zee, S. R. Arridge, and D. T. Delpy, “Spectral dependence of temporal point spread functions in human tissues,” Appl. Opt.32(4), 418–425 (1993). [CrossRef] [PubMed]
  35. A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40(2), 295–304 (1995). [CrossRef] [PubMed]
  36. C. E. Cooper, S. J. Matcher, J. S. Wyatt, M. Cope, G. C. Brown, E. M. Nemoto, and D. T. Delpy, “Near-infrared spectroscopy of the brain: relevance to cytochrome oxidase bioenergetics,” Biochem. Soc. Trans.22(4), 974–980 (1994). [PubMed]
  37. B. Chance and G. R. Williams, “Respiratory enzymes in oxidative phosphorylation. III. The steady state,” J. Biol. Chem.217(1), 409–427 (1955). [PubMed]
  38. C. W. Shuttleworth, A. M. Brennan, and J. A. Connor, “NAD(P)H fluorescence imaging of postsynaptic neuronal activation in murine hippocampal slices,” J. Neurosci.23(8), 3196–3208 (2003). [PubMed]
  39. M. A. Mintun, B. N. Lundstrom, A. Z. Snyder, A. G. Vlassenko, G. L. Shulman, and M. E. Raichle, “Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data,” Proc. Natl. Acad. Sci. U.S.A.98(12), 6859–6864 (2001). [CrossRef] [PubMed]
  40. S. Asgari, A. Doerfler, T. Engelhorn, H. J. Röhrborn, and D. Stolke, “In-vivo measurement of cytochrome using NIRS during acute focal cerebral ischaemia and reperfusion in rats,” Zentralbl. Neurochir.63(04), 146–152 (2002). [CrossRef] [PubMed]
  41. F. Orihuela-Espina, D. R. Leff, D. R. James, A. W. Darzi, and G. Z. Yang, “Quality control and assurance in functional near infrared spectroscopy (fNIRS) experimentation,” Phys. Med. Biol.55(13), 3701–3724 (2010). [CrossRef] [PubMed]
  42. F. Tian, B. Chance, and H. Liu, “Investigation of the prefrontal cortex in response to duration-variable anagram tasks using functional near-infrared spectroscopy,” J. Biomed. Opt.14(5), 054016 (2009). [CrossRef] [PubMed]
  43. F. Schneider, R. E. Gur, A. Alavi, M. E. Seligman, L. H. Mozley, R. J. Smith, P. D. Mozley, and R. C. Gur, “Cerebral blood flow changes in limbic regions induced by unsolvable anagram tasks,” Am. J. Psychiatry153(2), 206–212 (1996). [PubMed]
  44. O. Vartanian and V. Goel, “Task constraints modulate activation in right ventral lateral prefrontal cortex,” Neuroimage27(4), 927–933 (2005). [CrossRef] [PubMed]
  45. D. L. Drabkin, “Metabolism of the hemin chromoproteins,” Physiol. Rev.31(4), 345–431 (1951). [PubMed]
  46. M. Smith and C. Elwell, “Near-infrared spectroscopy: shedding light on the injured brain,” Anesth. Analg.108(4), 1055–1057 (2009). [CrossRef] [PubMed]
  47. H. W. Schytz, T. Wienecke, L. T. Jensen, J. Selb, D. A. Boas, and M. Ashina, “Changes in cerebral blood flow after acetazolamide: an experimental study comparing near-infrared spectroscopy and SPECT,” Eur. J. Neurol.16(4), 461–467 (2009). [CrossRef] [PubMed]
  48. T. J. Germon, P. D. Evans, N. J. Barnett, P. Wall, A. R. Manara, and R. J. Nelson, “Cerebral near infrared spectroscopy: emitter-detector separation must be increased,” Br. J. Anaesth.82(6), 831–837 (1999). [CrossRef] [PubMed]
  49. T. J. Germon, P. D. Evans, A. R. Manara, N. J. Barnett, P. Wall, and R. J. Nelson, “Sensitivity of near infrared spectroscopy to cerebral and extra-cerebral oxygenation changes is determined by emitter-detector separation,” J. Clin. Monit. Comput.14(5), 353–360 (1998). [CrossRef] [PubMed]
  50. M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Opt. Express2(3), 552–567 (2011). [CrossRef] [PubMed]
  51. T. Correia, A. Gibson, and J. Hebden, “Identification of the optimal wavelengths for optical topography: a photon measurement density function analysis,” J. Biomed. Opt.15(5), 056002 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: PDF (309 KB)     
» Media 2: PDF (303 KB)     
» Media 3: PDF (158 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited