OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 10 — Oct. 1, 2012
  • pp: 2600–2610

In vivo feasibility of endovascular Doppler optical coherence tomography

Cuiru Sun, Felix Nolte, Kyle H. Y. Cheng, Barry Vuong, Kenneth K. C. Lee, Beau A. Standish, Brian Courtney, Thomas R. Marotta, Adrian Mariampillai, and Victor X. D. Yang  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 10, pp. 2600-2610 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1914 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Feasibility of detecting intravascular flow using a catheter based endovascular optical coherence tomography (OCT) system is demonstrated in a porcine carotid model in vivo. The effects of A-line density, radial distance, signal-to-noise ratio, non-uniform rotational distortion (NURD), phase stability of the swept wavelength laser and interferometer system on Doppler shift detection limit were investigated in stationary and flow phantoms. Techniques for NURD induced phase shift artifact removal were developed by tracking the catheter sheath. Detection of high flow velocity (~51 cm/s) present in the porcine carotid artery was obtained by phase unwrapping techniques and compared to numerical simulation, taking into consideration flow profile distortion by the eccentrically positioned imaging catheter. Using diluted blood in saline mixture as clearing agent, simultaneous Doppler OCT imaging of intravascular flow and structural OCT imaging of the carotid artery wall was feasible. To our knowledge, this is the first in vivo demonstration of Doppler imaging and absolute measurement of intravascular flow using a rotating fiber catheter in carotid artery.

© 2012 OSA

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(280.3340) Remote sensing and sensors : Laser Doppler velocimetry

ToC Category:
Optical Coherence Tomography

Original Manuscript: August 21, 2012
Revised Manuscript: September 12, 2012
Manuscript Accepted: September 15, 2012
Published: September 18, 2012

Cuiru Sun, Felix Nolte, Kyle H. Y. Cheng, Barry Vuong, Kenneth K. C. Lee, Beau A. Standish, Brian Courtney, Thomas R. Marotta, Adrian Mariampillai, and Victor X. D. Yang, "In vivo feasibility of endovascular Doppler optical coherence tomography," Biomed. Opt. Express 3, 2600-2610 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Suwanwela, U. Can, K. L. Furie, J. F. Southern, N. R. Macdonald, C. S. Ogilvy, C. J. Hansen, F. S. Buonanno, W. M. Abbott, W. J. Koroshetz, and J. P. Kistler, “Carotid Doppler ultrasound criteria for internal carotid artery stenosis based on residual lumen diameter calculated from en bloc carotid endarterectomy specimens,” Stroke27(11), 1965–1969 (1996). [CrossRef] [PubMed]
  2. A. V. Kamenskiy, Y. A. Dzenis, J. N. Mactaggart, A. S. Desyatova, and I. I. Pipinos, “In vivo three-dimensional blood velocity profile shapes in the human common, internal, and external carotid arteries,” J. Vasc. Surg.54(4), 1011–1020 (2011). [CrossRef] [PubMed]
  3. J. W. Doucette, P. D. Corl, H. M. Payne, A. E. Flynn, M. Goto, M. Nassi, and J. Segal, “Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity,” Circulation85(5), 1899–1911 (1992). [CrossRef] [PubMed]
  4. D. H. Koschyk, C. W. Hamm, and T. Meinertz, “Colour coded blood flow imaging in intravascular ultrasound,” Heart84(4), 376 (2000). [CrossRef] [PubMed]
  5. W. G. Li, A. F. W. van der Steen, C. T. Lancée, I. Céspedes, and N. Bom, “Blood flow imaging and volume flow quantitation with intravascular ultrasound,” Ultrasound Med. Biol.24(2), 203–214 (1998). [CrossRef] [PubMed]
  6. C. Petersen, D. Adler, and J. Schmitt, “Clinical studies of frequency domain optical coherence tomography in the coronary arteries: the first 2000 patients,” Proc. SPIE7548, 75483H (2010).
  7. X. Li, T. H. Ko, and J. G. Fujimoto, “Intraluminal fiber-optic Doppler imaging catheter for structural and functional optical coherence tomography,” Opt. Lett.26(23), 1906–1908 (2001). [CrossRef] [PubMed]
  8. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett.22(18), 1439–1441 (1997). [CrossRef] [PubMed]
  9. H. Ren, Z. Ding, Y. Zhao, J. Miao, J. S. Nelson, and Z. Chen, “Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin,” Opt. Lett.27(19), 1702–1704 (2002). [CrossRef] [PubMed]
  10. B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express13(14), 5483–5493 (2005). [CrossRef] [PubMed]
  11. A. M. Rollins, S. Yazdanfar, R. Ung-Arunyawee, and J. A. Izatt, “Real time color Doppler optical coherence tomography using a novel autocorrelation technique,” in Summaries of Papers Presented at the Conference on Lasers and Electro-Optics,1999. CLEO '99 (IEEE, 1999), 451–452.
  12. V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. Alex Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun.208(4-6), 209–214 (2002). [CrossRef]
  13. K. H. Y. Cheng, C. R. Sun, J. P. Cruz, T. R. Marotta, J. Spears, W. J. Montanera, P. R. Herman, A. Thind, B. Courtney, B. A. Standish, and V. X. D. Yang, “Feasibility of endovascular optical coherence tomography for high-resolution carotid vessel wall imaging,” Proc. SPIE8207, 82074N, 82074N-12 (2012). [CrossRef]
  14. K. H. Cheng, C. Sun, J. P. Cruz, T. R. Marotta, J. Spears, W. J. Montanera, A. Thind, B. Courtney, B. A. Standish, and V. X. Yang, “Comprehensive data visualization for high resolution endovascular carotid arterial wall imaging,” J. Biomed. Opt.17(5), 056003 (2012). [CrossRef] [PubMed]
  15. V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express11(7), 794–809 (2003). [CrossRef] [PubMed]
  16. K. K. C. Lee, A. Mariampillai, J. X. Z. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, and V. X. D. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express3(7), 1557–1564 (2012). [CrossRef] [PubMed]
  17. D. J. Smithies, T. Lindmo, Z. P. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol.43(10), 3025–3044 (1998). [CrossRef] [PubMed]
  18. G. van Soest, J. G. Bosch, and A. F. W. van der Steen, “Azimuthal registration of image sequences affected by nonuniform rotation distortion,” IEEE Trans. Inf. Technol. Biomed.12(3), 348–355 (2008). [CrossRef] [PubMed]
  19. G. J. Tearney, E. Regar, T. Akasaka, T. Adriaenssens, P. Barlis, H. G. Bezerra, B. Bouma, N. Bruining, J. M. Cho, S. Chowdhary, M. A. Costa, R. de Silva, J. Dijkstra, C. Di Mario, D. Dudek, E. Falk, M. D. Feldman, P. Fitzgerald, H. M. Garcia-Garcia, N. Gonzalo, J. F. Granada, G. Guagliumi, N. R. Holm, Y. Honda, F. Ikeno, M. Kawasaki, J. Kochman, L. Koltowski, T. Kubo, T. Kume, H. Kyono, C. C. S. Lam, G. Lamouche, D. P. Lee, M. B. Leon, A. Maehara, O. Manfrini, G. S. Mintz, K. Mizuno, M. A. Morel, S. Nadkarni, H. Okura, H. Otake, A. Pietrasik, F. Prati, L. Räber, M. D. Radu, J. Rieber, M. Riga, A. Rollins, M. Rosenberg, V. Sirbu, P. W. J. C. Serruys, K. Shimada, T. Shinke, J. Shite, E. Siegel, S. Sonoda, M. Suter, S. Takarada, A. Tanaka, M. Terashima, T. Thim, S. Uemura, G. J. Ughi, H. M. M. van Beusekom, A. F. W. van der Steen, G. A. van Es, G. van Soest, R. Virmani, S. Waxman, N. J. Weissman, G. Weisz, and International Working Group for Intravascular Optical Coherence Tomography (IWG-IVOCT), “Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation,” J. Am. Coll. Cardiol.59(12), 1058–1072 (2012). [CrossRef] [PubMed]
  20. K. H. Y. Cheng, C. Sun, B. Vuong, K. K. C. Lee, A. Mariampillai, T. R. Marotta, J. Spears, W. J. Montanera, P. R. Herman, T.-R. Kiehl, B. A. Standish, and V. X. D. Yang, “Endovascular optical coherence tomography intensity kurtosis: visualization of vasa vasorum in porcine carotid artery,” Biomed. Opt. Express3(3), 388–399 (2012). [CrossRef] [PubMed]
  21. C. Dennis, Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software (Wiley-Interscience, New York, 1998).
  22. R. S. C. Cobbold, Foundations of Biomedical Ultrasound (Oxford University Press, Oxford, 2007), p. 832.
  23. S. G. Proskurin, I. A. Sokolova, and R. K. Wang, “Imaging of non-parabolic velocity profiles in converging flow with optical coherence tomography,” Phys. Med. Biol.48(17), 2907–2918 (2003). [CrossRef] [PubMed]
  24. B. Rao, L. F. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. P. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt.13(4), 040505 (2008). [CrossRef] [PubMed]
  25. D. Morofke, M. C. Kolios, I. A. Vitkin, and V. X. Yang, “Wide dynamic range detection of bidirectional flow in Doppler optical coherence tomography using a two-dimensional Kasai estimator,” Opt. Lett.32(3), 253–255 (2007). [CrossRef] [PubMed]
  26. J. Kalkman, A. V. Bykov, G. J. Streekstra, and T. G. van Leeuwen, “Multiple scattering effects in Doppler optical coherence tomography of flowing blood,” Phys. Med. Biol.57(7), 1907–1917 (2012). [CrossRef] [PubMed]
  27. F. J. H. Gijsen, J. J. Wentzel, A. Thury, F. Mastik, J. A. Schaar, J. C. H. Schuurbiers, C. J. Slager, W. J. van der Giessen, P. J. de Feyter, A. F. W. van der Steen, and P. W. Serruys, “Strain distribution over plaques in human coronary arteries relates to shear stress,” Am. J. Physiol. Heart Circ. Physiol.295(4), H1608–H1614 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (4820 KB)     
» Media 2: AVI (1252 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited