OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 10 — Oct. 1, 2012
  • pp: 2611–2622

High-speed, image-based eye tracking with a scanning laser ophthalmoscope

Christy K. Sheehy, Qiang Yang, David W. Arathorn, Pavan Tiruveedhula, Johannes F. de Boer, and Austin Roorda  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 10, pp. 2611-2622 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2488 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a high-speed, image-based tracking scanning laser ophthalmoscope (TSLO) that can provide high fidelity structural images, real-time eye tracking and targeted stimulus delivery. The system was designed for diffraction-limited performance over an 8° field of view (FOV) and operates with a flexible field of view of 1°–5.5°. Stabilized videos of the retina were generated showing an amplitude of motion after stabilization of 0.2 arcmin or less across all frequencies. In addition, the imaging laser can be modulated to place a stimulus on a targeted retinal location. We show a stimulus placement accuracy with a standard deviation less than 1 arcmin. With a smaller field size of 2°, individual cone photoreceptors were clearly visible at eccentricities outside of the fovea.

© 2012 OSA

OCIS Codes
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(330.2210) Vision, color, and visual optics : Vision - eye movements
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices

ToC Category:
Ophthalmology Applications

Original Manuscript: July 23, 2012
Revised Manuscript: September 17, 2012
Manuscript Accepted: September 17, 2012
Published: September 19, 2012

Christy K. Sheehy, Qiang Yang, David W. Arathorn, Pavan Tiruveedhula, Johannes F. de Boer, and Austin Roorda, "High-speed, image-based eye tracking with a scanning laser ophthalmoscope," Biomed. Opt. Express 3, 2611-2622 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. R. Sadda, P. A. Keane, Y. Ouyang, J. F. Updike, and A. C. Walsh, “Impact of scanning density on measurements from spectral domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.51(2), 1071–1078 (2010). [CrossRef] [PubMed]
  2. E. Garcia-Martin, I. Pinilla, E. Sancho, C. Almarcegui, I. Dolz, D. Rodriguez-Mena, I. Fuertes, and N. Cuenca, “Optical coherence tomography in retinitis pigmentosa: reproducibility and capacity to detect macular and retinal nerve fiber layer thickness alterations,” Retina32(8), 1581–1591 (2012). [CrossRef] [PubMed]
  3. L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci.12(8), 967–969 (2009). [CrossRef] [PubMed]
  4. C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express14(2), 487–497 (2006). [CrossRef] [PubMed]
  5. D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express15(21), 13731–13744 (2007). [CrossRef] [PubMed]
  6. Q. Yang, D. W. Arathorn, P. Tiruveedhula, C. R. Vogel, and A. Roorda, “Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery,” Opt. Express18(17), 17841–17858 (2010). [CrossRef] [PubMed]
  7. A. Gómez-Vieyra, A. Dubra, D. Malacara-Hernández, and D. R. Williams, “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” Opt. Express17(21), 18906–18919 (2009). [CrossRef] [PubMed]
  8. S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg.21(5), S575–S580 (2005). [PubMed]
  9. J. B. Mulligan, “Recovery of motion parameters from distortions in scanned images,” in Proceedings of the NASA Image Registration Workshop (IRW97) (NASA Goddard Space Flight Center, MD, 1997), no. 19980236600
  10. American National Standard for the Safe Use of Lasers, ANSI Z136.1–2007 (Laser Institute of America, Orlando, 2007)
  11. S. B. Stevenson, A. Roorda, and G. Kumar, “Eye tracking with the adaptive optics scanning laser ophthalmoscope” in Proceedings of the 2010 Symposium on Eye-Tracking Research and Applications,S.N. Spencer, ed. (Association for Computed Machinery, New York, 2010), pp. 195–198.
  12. R. Engbert and R. Kliegl, In The Mind’s Eyes: Cognitive and Applied Aspects of Eye Movements, J. Hyona, R. Radach, and H. Deubel, eds. (Elsevier, Oxford, 2003).103–117.
  13. S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5(3), 229–240 (2004). [CrossRef] [PubMed]
  14. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett.33(2), 156–158 (2008). [CrossRef] [PubMed]
  15. L. A. Riggs, J. C. Armington, and F. Ratliff, “Motions of the retinal image during fixation,” J. Opt. Soc. Am.44(4), 315–321 (1954). [CrossRef] [PubMed]
  16. L. A. Riggs and A. M. Schick, “Accuracy of retinal image stabilization achieved with a plane mirror on a tightly fitting contact lens,” Vision Res.8(2), 159–169 (1968). [CrossRef] [PubMed]
  17. T. N. Cornsweet and H. D. Crane, “Accurate two-dimensional eye tracker using first and fourth Purkinje images,” J. Opt. Soc. Am.63(8), 921–928 (1973). [CrossRef] [PubMed]
  18. H. D. Crane and C. M. Steele, “Generation-V dual-Purkinje-image eyetracker,” Appl. Opt.24(4), 527–537 (1985). [CrossRef] [PubMed]
  19. F. Santini, G. Redner, R. Iovin, and M. Rucci, “EyeRIS: a general-purpose system for eye-movement-contingent display control,” Behav. Res. Methods39(3), 350–364 (2007). [CrossRef] [PubMed]
  20. M. Rucci, R. Iovin, M. Poletti, and F. Santini, “Miniature eye movements enhance fine spatial detail,” Nature447(7146), 852–854 (2007). [CrossRef] [PubMed]
  21. E. Midena, “Liquid crystal display microperimetry,” in Perimetry and the Fundus: an Introduction to Microperimetry, E. Midena, ed. (Slack, Thorofare, NJ, 2007), pp. 15–26.
  22. D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express14(8), 3354–3367 (2006). [CrossRef] [PubMed]
  23. S. Martinez-Conde, S. L. Macknik, X. G. Troncoso, and D. H. Hubel, “Microsaccades: a neurophysiological analysis,” Trends Neurosci.32(9), 463–475 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (3451 KB)     
» Media 2: AVI (3943 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited