OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 10 — Oct. 1, 2012
  • pp: 2681–2693

Effect of molecular organization on the image histograms of polarization SHG microscopy

Sotiris Psilodimitrakopoulos, Ivan Amat-Roldan, Pablo Loza-Alvarez, and David Artigas  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 10, pp. 2681-2693 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3779 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on its polarization dependency, second harmonic generation (PSHG) microscopy has been proven capable to structurally characterize molecular architectures in different biological samples. By exploiting this polarization dependency of the SHG signal in every pixel of the image, average quantitative structural information can be retrieved in the form of PSHG image histograms. In the present study we experimentally show how the PSHG image histograms can be affected by the organization of the SHG active molecules. Our experimental scenario grounds on two inherent properties of starch granules. Firstly, we take advantage of the radial organization of amylopectin molecules (the SHG source in starch) to attribute shifts of the image histograms to the existence of tilted off the plane molecules. Secondly, we use the property of starch to organize upon hydration to demonstrate that the degree of structural order at the molecular level affects the width of the PSHG image histograms. The shorter the width is the more organized the molecules in the sample are, resulting in a reliable method to measure order. The implication of this finding is crucial to the interpretation of PSHG images used for example in tissue diagnostics.

© 2012 OSA

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: June 29, 2012
Revised Manuscript: September 8, 2012
Manuscript Accepted: September 22, 2012
Published: September 28, 2012

Sotiris Psilodimitrakopoulos, Ivan Amat-Roldan, Pablo Loza-Alvarez, and David Artigas, "Effect of molecular organization on the image histograms of polarization SHG microscopy," Biomed. Opt. Express 3, 2681-2693 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J.82(6), 3330–3342 (2002). [CrossRef] [PubMed]
  2. S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J.90(2), 693–703 (2006). [CrossRef] [PubMed]
  3. F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Express15(19), 12286–12295 (2007). [CrossRef] [PubMed]
  4. C. Odin, T. Guilbert, A. Alkilani, O. P. Boryskina, V. Fleury, and Y. Le Grand, “Collagen and myosin characterization by orientation field second harmonic microscopy,” Opt. Express16(20), 16151–16165 (2008). [CrossRef] [PubMed]
  5. S. Psilodimitrakopoulos, S. I. Santos, I. Amat-Roldan, A. K. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt.14(1), 014001 (2009). [CrossRef] [PubMed]
  6. W. L. Chen, T. H. Li, P. J. Su, C. K. Chou, P. T. Fwu, S. J. Lin, D. Kim, P. T. C. So, and C. Y. Dong, “Second harmonic generation chi tensor microscopy for tissue imaging,” Appl. Phys. Lett.94, 3 (2009).
  7. V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A.107(17), 7763–7768 (2010). [CrossRef] [PubMed]
  8. P. J. Su, W. L. Chen, Y. F. Chen, and C. Y. Dong, “Determination of collagen nanostructure from second-order susceptibility tensor analysis,” Biophys. J.100(8), 2053–2062 (2011). [CrossRef] [PubMed]
  9. G. Latour, I. Gusachenko, L. Kowalczuk, I. Lamarre, and M. C. Schanne-Klein, “In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy,” Biomed. Opt. Express3(1), 1–15 (2012). [CrossRef] [PubMed]
  10. J. Shimada, H. Kaneko, T. Takada, S. Kitamura, and K. Kajiwara, “Conformation of amylose in aqueous solution: small-angle x-ray scattering measurements and simulations,” J. Phys. Chem. B104(9), 2136–2147 (2000). [CrossRef]
  11. K. Beck and B. Brodsky, “Supercoiled protein motifs: the collagen triple-helix and the α-helical coiled coil,” J. Struct. Biol.122(1-2), 17–29 (1998). [CrossRef] [PubMed]
  12. S. Psilodimitrakopoulos, I. Amat-Roldan, P. Loza-Alvarez, and D. Artigas, “Estimating the helical pitch angle of amylopectin in starch using polarization second harmonic generation microscopy,” J. Opt.12(8), 084007 (2010). [CrossRef]
  13. C. Odin, C. Heichette, D. Chretien, and Y. Le Grand, “Second harmonic microscopy of axonemes,” Opt. Express17(11), 9235–9240 (2009). [CrossRef] [PubMed]
  14. S. Psilodimitrakopoulos, V. Petegnief, G. Soria, I. Amat-Roldan, D. Artigas, A. M. Planas, and P. Loza-Alvarez, “Estimation of the effective orientation of the SHG source in primary cortical neurons,” Opt. Express17(16), 14418–14425 (2009). [CrossRef] [PubMed]
  15. S. Psilodimitrakopoulos, D. Artigas, G. Soria, I. Amat-Roldan, A. M. Planas, and P. Loza-Alvarez, “Quantitative discrimination between endogenous SHG sources in mammalian tissue, based on their polarization response,” Opt. Express17(12), 10168–10176 (2009). [CrossRef] [PubMed]
  16. A. Erikson, J. Örtegren, T. Hompland, C. de Lange Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt.12(4), 044002 (2007). [CrossRef] [PubMed]
  17. Z.-Y. Zhuo, C.-S. Liao, C.-H. Huang, J.-Y. Yu, Y.-Y. Tzeng, W. Lo, C.-Y. Dong, H.-C. Chui, Y.-C. Huang, H.-M. Lai, and S.-W. Chu, “Second harmonic generation imaging - a new method for unraveling molecular information of starch,” J. Struct. Biol.171(1), 88–94 (2010). [CrossRef] [PubMed]
  18. R. Cisek, L. Spencer, N. Prent, D. Zigmantas, G. S. Espie, and V. Barzda, “Optical microscopy in photosynthesis,” Photosynth. Res.102(2-3), 111–141 (2009). [CrossRef] [PubMed]
  19. G. C. Cox, N. Moreno, and J. Feijó, “Second-harmonic imaging of plant polysaccharides,” J. Biomed. Opt.10(2), 024013 (2005). [CrossRef] [PubMed]
  20. R. M. Brown, A. C. Millard, and P. J. Campagnola, “Macromolecular structure of cellulose studied by second-harmonic generation imaging microscopy,” Opt. Lett.28(22), 2207–2209 (2003). [CrossRef] [PubMed]
  21. O. Nadiarnykh, R. B. Lacomb, P. J. Campagnola, and W. A. Mohler, “Coherent and incoherent SHG in fibrillar cellulose matrices,” Opt. Express15(6), 3348–3360 (2007). [CrossRef] [PubMed]
  22. M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: a coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B114(31), 10200–10208 (2010). [CrossRef] [PubMed]
  23. T. A. Waigh, I. Hopkinson, A. M. Donald, M. F. Butler, F. Heidelbach, and C. Riekel, “Analysis of the native structure of starch granules with x-ray microfocus diffraction,” Macromolecules30(13), 3813–3820 (1997). [CrossRef]
  24. P.-J. Su, W.-L. Chen, J.-B. Hong, T.-H. Li, R.-J. Wu, C.-K. Chou, S.-J. Chen, C. Hu, S.-J. Lin, and C.-Y. Dong, “Discrimination of collagen in normal and pathological skin dermis through second-order susceptibility microscopy,” Opt. Express17(13), 11161–11171 (2009). [CrossRef] [PubMed]
  25. J. Duboisset, D. Aït-Belkacem, M. Roche, H. Rigneault, and S. Brasselet, “Generic model of the molecular orientational distribution probed by polarization-resolved second-harmonic generation,” Phys. Rev. A85(4), 043829 (2012). [CrossRef]
  26. Y. Chang, C. Chen, J. Chen, Y. Jin, and X. Deng, “Theoretical simulation study of linearly polarized light on microscopic second-harmonic generation in collagen type I,” J. Biomed. Opt.14(4), 044016 (2009). [CrossRef] [PubMed]
  27. I. Amat-Roldan, S. Psilodimitrakopoulos, P. Loza-Alvarez, and D. Artigas, “Fast image analysis in polarization SHG microscopy,” Opt. Express18(16), 17209–17219 (2010). [CrossRef] [PubMed]
  28. I. Gusachenko, G. Latour, and M.-C. Schanne-Klein, “Polarization-resolved Second Harmonic microscopy in anisotropic thick tissues,” Opt. Express18(18), 19339–19352 (2010). [CrossRef] [PubMed]
  29. S. Brasselet, D. Aït-Belkacem, A. Gasecka, F. Munhoz, S. Brustlein, and S. Brasselet, “Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging,” Opt. Express18(14), 14859–14870 (2010). [CrossRef] [PubMed]
  30. P. Schön, M. Behrndt, D. Aıt-Belkacem, H. Rigneault, and S. Brasselet, “Polarization and phase pulse shaping applied to structural contrast in nonlinear microscopy imaging,” Phys. Rev. A81(1), 013809 (2010). [CrossRef]
  31. E. Y. S. Yew and C. J. R. Sheppard, “Effects of axial field components on second harmonic generation microscopy,” Opt. Express14(3), 1167–1174 (2006). [CrossRef] [PubMed]
  32. G. J. Simpson and K. L. Rowlen, “An SHG magic angle: dependence of second harmonic generation orientation measurements on the width of the orientation distribution,” J. Am. Chem. Soc.121(11), 2635–2636 (1999). [CrossRef]
  33. M. Abdel-Akher and A. N. Michalinos, “Separation and purification of starch from chufa nut tubers (Cyperus esculentus),” Starch15(9), 329–334 (1963). [CrossRef]
  34. M. A. Swanson, “Studies on the structure of polysaccharides IV. Relation of the iodine color to the structure,” J. Biol. Chem.172, 825–837 (1947).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited