OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 11 — Nov. 1, 2012
  • pp: 2707–2719

Goniometric measurements of thick tissue using Monte Carlo simulations to obtain the single scattering anisotropy coefficient

Gunnsteinn Hall, Steven L. Jacques, Kevin W. Eliceiri, and Paul J. Campagnola  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 11, pp. 2707-2719 (2012)
http://dx.doi.org/10.1364/BOE.3.002707


View Full Text Article

Enhanced HTML    Acrobat PDF (3806 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The scattering anisotropy, g, of tissue can be a powerful metric of tissue structure, and is most directly measured via goniometry and fitting to the Henyey-Greenstein phase function. We present a method based on an independent attenuation measurement of the scattering coefficient along with Monte Carlo simulations to account for multiple scattering, allowing the accurate determination of measurement of g for tissues of thickness within the quasi-ballistic regime. Simulations incorporating the experimental geometry and bulk optical properties show that significant errors occur in extraction of g values, even for tissues of thickness less than one scattering length without modeling corrections. Experimental validation is provided by determination of g in mouse muscle tissues and it is shown that the obtained values are independent of thickness. In addition we present a simple deconvolution-based method and show that it provides excellent estimates for high anisotropy values (above 0.95) when coupled with an independent attenuation measurement.

© 2012 OSA

OCIS Codes
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(290.0290) Scattering : Scattering
(290.4210) Scattering : Multiple scattering
(290.5820) Scattering : Scattering measurements
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Optics of Tissue and Turbid Media

History
Original Manuscript: August 23, 2012
Revised Manuscript: September 24, 2012
Manuscript Accepted: September 24, 2012
Published: October 2, 2012

Citation
Gunnsteinn Hall, Steven L. Jacques, Kevin W. Eliceiri, and Paul J. Campagnola, "Goniometric measurements of thick tissue using Monte Carlo simulations to obtain the single scattering anisotropy coefficient," Biomed. Opt. Express 3, 2707-2719 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-11-2707


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Tuchin, Tissue Optics (SPIE, 2007).
  2. A. Yodh and B. Chance, “Spectroscopy and Imaging with Diffusing Light,” Phys. Today48(3), 34–40 (1995). [CrossRef]
  3. D. Jakubowski, F. Bevilacqua, S. Merritt, A. Cerussi, and B. J. Tromberg, “Quantitative Absorption and Scattering Spectra in Thick Tissues Using Broadband Diffuse Optical Spectroscopy, (Oxford University Press, 2009).
  4. M. S. Patterson, B. C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application,” Lasers Med. Sci.6(2), 155–168 (1991). [CrossRef]
  5. S. Chandrasekhar, Radiative Transfer (Dover, 1960).
  6. L. V. Wang and H.-I. Wu, Biomedical Optics: Principles and Imaging (Wiley-Interscience, 2007).
  7. R. Elaloufi, R. Carminati, and J. J. Greffet, “Diffusive-to-ballistic transition in dynamic light transmission through thin scattering slabs: a radiative transfer approach,” J. Opt. Soc. Am. A21(8), 1430–1437 (2004). [CrossRef] [PubMed]
  8. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995). [CrossRef] [PubMed]
  9. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A Review of the Optical-Properties of Biological Tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990). [CrossRef]
  10. O. Nadiarnykh, R. B. LaComb, M. A. Brewer, and P. J. Campagnola, “Alterations of the extracellular matrix in ovarian cancer studied by Second Harmonic Generation imaging microscopy,” BMC Cancer10(1), 94 (2010). [CrossRef] [PubMed]
  11. R. LaComb, O. Nadiarnykh, and P. J. Campagnola, “Quantitative second harmonic generation imaging of the diseased state osteogenesis imperfecta: experiment and simulation,” Biophys. J.94(11), 4504–4514 (2008). [CrossRef] [PubMed]
  12. S. L. Jacques, C. Alter, and S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci.1, 309–333 (1987).
  13. R. Marchesini, A. Bertoni, S. Andreola, E. Melloni, and A. E. Sichirollo, “Extinction and absorption coefficients and scattering phase functions of human tissues in vitro,” Appl. Opt.28(12), 2318–2324 (1989). [CrossRef] [PubMed]
  14. P. Y. Liu, “A new phase function approximating to Mie scattering for radiative transport equations,” Phys. Med. Biol.39(6), 1025–1036 (1994). [CrossRef] [PubMed]
  15. J. Piskozub and D. McKee, “Effective scattering phase functions for the multiple scattering regime,” Opt. Express19(5), 4786–4794 (2011). [CrossRef] [PubMed]
  16. L. I. Chaikovskaya, O. V. Tsarjuk, I. V. Belotserkovsky, and M. A. Vozmitel, “Determination of optical properties of tissues,” J. Quant. Spectrosc. Radiat. Transf.112(13), 2128–2133 (2011). [CrossRef]
  17. L. V. Wang and S. L. Jacques, “Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory,” Comput. Methods Programs Biomed.61(3), 163–170 (2000). [CrossRef] [PubMed]
  18. R. Samatham, S. L. Jacques, and P. J. Campagnola, “Optical properties of mutant versus wild-type mouse skin measured by reflectance-mode confocal scanning laser microscopy (rCSLM),” J. Biomed. Opt.13(4), 041309 (2008). [CrossRef] [PubMed]
  19. S. L. Jacques, B. Wang, and R. Samatham, “Reflectance confocal microscopy of optical phantoms,” Biomed. Opt. Express3(6), 1162–1172 (2012). [CrossRef] [PubMed]
  20. V. Turzhitsky, N. N. Mutyal, A. J. Radosevich, and V. Backman, “Multiple scattering model for the penetration depth of low-coherence enhanced backscattering,” J. Biomed. Opt.16(9), 097006 (2011). [CrossRef] [PubMed]
  21. M. G. Giacomelli and A. Wax, “Imaging Contrast and Resolution in Multiply Scattered Low Coherence Interferometry,” IEEE J. Sel. Top. Quantum Electron.18(3), 1050–1058 (2012). [CrossRef]
  22. H. F. Ding, Z. Wang, X. Liang, S. A. Boppart, K. Tangella, and G. Popescu, “Measuring the scattering parameters of tissues from quantitative phase imaging of thin slices,” Opt. Lett.36(12), 2281–2283 (2011). [CrossRef] [PubMed]
  23. J. D. Rogers, I. R. Capoğlu, and V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett.34(12), 1891–1893 (2009). [CrossRef] [PubMed]
  24. I. R. Çapoğlu, J. D. Rogers, A. Taflove, and V. Backman, “Accuracy of the Born approximation in calculating the scattering coefficient of biological continuous random media,” Opt. Lett.34(17), 2679–2681 (2009). [CrossRef] [PubMed]
  25. M. Hoppert, Microscopic Techniques in Biotechnology (Wiley-VCH, 2003).
  26. H. Li and S. Xie, “Measurement method of the refractive index of biotissue by total internal reflection,” Appl. Opt.35(10), 1793–1795 (1996). [CrossRef] [PubMed]
  27. K. W. Dunn and P. A. Young, “Principles of multiphoton microscopy,” Nephron, Exp. Nephrol.103(2), e33–e40 (2006). [CrossRef] [PubMed]
  28. I. S. Saidi, S. L. Jacques, and F. K. Tittel, “Mie and Rayleigh modeling of visible-light scattering in neonatal skin,” Appl. Opt.34(31), 7410–7418 (1995). [CrossRef] [PubMed]
  29. A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt.9(6), 1143–1151 (2004). [CrossRef] [PubMed]
  30. A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol.8(3), 211–218 (2001). [CrossRef] [PubMed]
  31. M. Xu and R. R. Alfano, “Fractal mechanisms of light scattering in biological tissue and cells,” Opt. Lett.30(22), 3051–3053 (2005). [CrossRef] [PubMed]
  32. C. J. Sheppard, “Fractal model of light scattering in biological tissue and cells,” Opt. Lett.32(2), 142–144 (2007). [CrossRef] [PubMed]
  33. V. Turzhitsky, A. Radosevich, J. D. Rogers, A. Taflove, and V. Backman, “A predictive model of backscattering at subdiffusion length scales,” Biomed. Opt. Express1(3), 1034–1046 (2010). [CrossRef] [PubMed]
  34. J. M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt.37(13), 2788–2797 (1998). [CrossRef] [PubMed]
  35. I. Turcu, “Effective phase function for light scattered by disperse systems–the small-angle approximation,”. Opt. A Pure App. Opt.6(6), 537–543 (2004). [CrossRef]
  36. N. Pfeiffer and G. H. Chapman, “Successive order, multiple scattering of two-term Henyey-Greenstein phase functions,” Opt. Express16(18), 13637–13642 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited