OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 11 — Nov. 1, 2012
  • pp: 2774–2783

Digital focusing of OCT images based on scalar diffraction theory and information entropy

Guozhong Liu, Zhongwei Zhi, and Ruikang K. Wang  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 11, pp. 2774-2783 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1987 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper describes a digital method that is capable of automatically focusing optical coherence tomography (OCT) en face images without prior knowledge of the point spread function of the imaging system. The method utilizes a scalar diffraction model to simulate wave propagation from out-of-focus scatter to the focal plane, from which the propagation distance between the out-of-focus plane and the focal plane is determined automatically via an image-definition-evaluation criterion based on information entropy theory. By use of the proposed approach, we demonstrate that the lateral resolution close to that at the focal plane can be recovered from the imaging planes outside the depth of field region with minimal loss of resolution. Fresh onion tissues and mouse fat tissues are used in the experiments to show the performance of the proposed method.

© 2012 OSA

OCIS Codes
(100.1830) Image processing : Deconvolution
(100.3190) Image processing : Inverse problems
(100.6950) Image processing : Tomographic image processing
(110.3000) Imaging systems : Image quality assessment
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Image Reconstruction and Inverse Problems

Original Manuscript: August 1, 2012
Revised Manuscript: September 27, 2012
Manuscript Accepted: September 28, 2012
Published: October 10, 2012

Guozhong Liu, Zhongwei Zhi, and Ruikang K. Wang, "Digital focusing of OCT images based on scalar diffraction theory and information entropy," Biomed. Opt. Express 3, 2774-2783 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003). [CrossRef]
  2. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005). [CrossRef]
  3. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express15(7), 4083–4097 (2007). [CrossRef] [PubMed]
  4. R. K. Wang and Z. Ma, “Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography,” Opt. Lett.31(20), 3001–3003 (2006). [CrossRef] [PubMed]
  5. Z. H. Ding, H. W. Ren, Y. H. Zhao, J. S. Nelson, and Z. P. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett.27(4), 243–245 (2002). [CrossRef] [PubMed]
  6. T. Xie, S. Guo, Z. Chen, D. Mukai, and M. Brenner, “GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking,” Opt. Express14(8), 3238–3246 (2006). [CrossRef] [PubMed]
  7. A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett.86(10), 103902 (2005). [CrossRef]
  8. D. Merino, Ch. Dainty, A. Bradu, and A. G. Podoleanu, “Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy,” Opt. Express14(8), 3345–3353 (2006). [CrossRef] [PubMed]
  9. M. J. Cobb, X. Liu, and X. Li, “Continuous focus tracking for real-time optical coherence tomography,” Opt. Lett.30(13), 1680–1682 (2005). [CrossRef] [PubMed]
  10. B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a micro-electromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004). [CrossRef]
  11. J. Holmes and S. Hattersley, “Image blending and speckle noise reduction in multi-beam OCT,” Proc. SPIE7168, 71681N, 71681N-8 (2009). [CrossRef]
  12. Y. Yasuno, J. I. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, “Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography,” Opt. Express14(3), 1006–1020 (2006). [CrossRef] [PubMed]
  13. M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett.33(16), 1365–1367 (1997). [CrossRef]
  14. T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process.14(9), 1254–1264 (2005). [CrossRef] [PubMed]
  15. R. K. Wang, “Resolution improved optical coherence-gating tomography for imaging biological tissue,” J. Mod. Opt.46, 1905–1913 (1999).
  16. Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A26(1), 72–77 (2009). [CrossRef] [PubMed]
  17. J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K. S. Lee, “Gabor-based fusion technique for optical coherence microscopy,” Opt. Express18(4), 3632–3642 (2010). [CrossRef] [PubMed]
  18. B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A24(9), 2527–2542 (2007). [CrossRef] [PubMed]
  19. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007). [CrossRef]
  20. L. Yu, B. Rao, J. Zhang, J. Su, Q. Wang, S. Guo, and Z. Chen, “Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method,” Opt. Express15(12), 7634–7641 (2007). [CrossRef] [PubMed]
  21. G. Liu, S. Yousefi, Z. Zhi, and R. K. Wang, “Automatic estimation of point-spread-function for deconvoluting out-of-focus optical coherence tomographic images using information entropy-based approach,” Opt. Express19(19), 18135–18148 (2011). [CrossRef] [PubMed]
  22. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw Hill, Boston, 1996).
  23. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett.30(16), 2092–2094 (2005). [CrossRef] [PubMed]
  24. L. Yu and M. K. Kim, “Pixel resolution control in numerical reconstruction of digital holography,” Opt. Lett.31(7), 897–899 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (10466 KB)     
» Media 2: AVI (6515 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited