OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 11 — Nov. 1, 2012
  • pp: 2866–2880

Dynamic quantitative phase imaging for biological objects using a pixelated phase mask

Katherine Creath and Goldie Goldstein  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 11, pp. 2866-2880 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (14791 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper describes research in developing a dynamic quantitative phase imaging microscope providing instantaneous measurements of dynamic motions within and among live cells without labels or contrast agents. It utilizes a pixelated phase mask enabling simultaneous measurement of multiple interference patterns derived using the polarization properties of light to track dynamic motions and morphological changes. Optical path difference (OPD) and optical thickness (OT) data are obtained from phase images. Two different processing routines are presented to remove background surface shape to enable quantification of changes in cell position and volume over time. Data from a number of different moving biological organisms and cell cultures are presented.

© 2012 OSA

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy
(180.0180) Microscopy : Microscopy
(180.3170) Microscopy : Interference microscopy
(110.3175) Imaging systems : Interferometric imaging

ToC Category:

Original Manuscript: June 26, 2012
Revised Manuscript: August 25, 2012
Manuscript Accepted: September 11, 2012
Published: October 17, 2012

Virtual Issues
BIOMED 2012 (2012) Biomedical Optics Express

Katherine Creath and Goldie Goldstein, "Dynamic quantitative phase imaging for biological objects using a pixelated phase mask," Biomed. Opt. Express 3, 2866-2880 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Popescu, “Quantitative phase imaging of nanoscale cell structure and dynamics,” in Methods in Nano Cell Biology, B. P. Jena, ed., Volume 90 of Methods in Cell Biology (Elsevier, San Diego, 2008), pp. 87–115.
  2. G. Popescu, Quantitative Phase Imaging of Cells and Tissues (Mc-Graw Hill, New York, 2011).
  3. J. Reed, M. Frank, J. J. Troke, J. Schmit, S. Han, M. A. Teitell, and J. K. Gimzewski, “High throughput cell nanomechanics with mechanical imaging interferometry,” Nanotechnology19(23), 235101 (2008). [CrossRef] [PubMed]
  4. D. Malacara, M. ServÌn, and Z. Malacara, Interferogram Analysis for Optical Testing, 2nd ed ed. (Taylor & Francis, Boca Raton, FL, 2005).
  5. J. Schmit, K. Creath, and J. C. Wyant, “Surface profilers, multiple wavelength, and white light interferometry,” in Optical Shop Testing; 3rd ed., D. Malacara, ed. (Wiley-Interscience, Hoboken, N.J., 2007), pp. 667–755.
  6. G. A. Dunn and D. Zicha, “Phase-shifting interference microscopy applied to the analysis of cell behaviour,” Symp. Soc. Exp. Bio. 47, 91–106 (1993).
  7. V. P. Tychinsky, A. V. Kretushev, I. V. Klemyashov, T. V. Vyshenskaya, N. A. Filippova, N. T. Raikhlin, and A. A. Shtil, “Quantitative real-time analysis of nucleolar stress by coherent phase microscopy,” J. Biomed. Opt.13(6), 064032 (2008). [CrossRef] [PubMed]
  8. C. Yang, A. Wax, M. S. Hahn, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics,” Opt. Lett.26(16), 1271–1273 (2001). [CrossRef] [PubMed]
  9. L. F. Yu, S. Mohanty, G. J. Liu, S. Genc, Z. P. Chen, and M. W. Berns, “Quantitative phase evaluation of dynamic changes on cell membrane during laser microsurgery,” J. Biomed. Opt.13(5), 050508 (2008). [CrossRef] [PubMed]
  10. K. Creath, “Dynamic quantitative phase images of pond life, insect wings, and in vitro cell cultures,” Proc. SPIE7782, 77820B, 77820B-13 (2010). [CrossRef]
  11. K. Creath, “Dynamic phase imaging utilizing a 4-dimensional microscope system,” Proc. SPIE7904, 79040O, 79040O-11 (2011). [CrossRef]
  12. K. Creath, “Dynamic phase imaging for in vitro process monitoring and cell tracking,” in Proceedings of the 33rd Annual International Conference of the IEEE EMBS (IEEE, 2011), pp. 5977–5980.
  13. K. Creath and G. Goldstein, “Dynamic phase imaging and processing of moving biological organisms,” Proc. SPIE8227, 82270M, 82270M-10 (2012). [CrossRef]
  14. K. B. Farr and N. George, “Beamsplitter cube for white light interferometry,” Opt. Eng.31(10), 2191–2196 (1992). [CrossRef]
  15. D. M. Gale, M. I. Pether, and J. C. Dainty, “Linnik microscope imaging of integrated circuit structures,” Appl. Opt.35(1), 131–148 (1996). [CrossRef] [PubMed]
  16. A. Pförtner and J. Schwider, “Dispersion error in white-light linnik interferometers and its implications for evaluation procedures,” Appl. Opt.40(34), 6223–6228 (2001). [CrossRef] [PubMed]
  17. I. Abdulhalim, “Competence between spatial and temporal coherence in full field optical coherence tomography and intererence microscopy,” J. Opt. A, Pure Appl. Opt.8(11), 952–958 (2006). [CrossRef]
  18. V. Ryabukho, D. Lyakin, and M. Lobachev, “Longitudinal pure spatial coherence of a light field with wide frequency and angular spectra,” Opt. Lett.30(3), 224–226 (2005). [CrossRef] [PubMed]
  19. S. Han, “Interferometric testing through transmissive media,” Proc. SPIE6293, 629305, 629305-5 (2006). [CrossRef]
  20. M. B. Sinclair, M. P. de Boer, and A. D. Corwin, “Long-working-distance incoherent-light interference microscope,” Appl. Opt.44(36), 7714–7721 (2005). [CrossRef] [PubMed]
  21. J. Dong, R. Lu, Y. Li, and K. Wu, “Automated determination of best focus and minimization of optical path difference in Linnik white light interferometry,” Appl. Opt.50(30), 5861–5871 (2011). [CrossRef] [PubMed]
  22. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A16(5), 1168–1174 (1999). [CrossRef]
  23. N. J. Brock, J. E. Millerd, J. C. Wyant, and J. B. Hayes, “Pixelated phase-mask interferometer,” U.S. Patent 7,230,717 (12 June 2007).
  24. B. T. Kimbrough, “Pixelated mask spatial carrier phase shifting interferometry algorithms and associated errors,” Appl. Opt.45(19), 4554–4562 (2006). [CrossRef] [PubMed]
  25. M. Novak, J. Millerd, N. Brock, M. North-Morris, J. Hayes, and J. Wyant, “Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer,” Appl. Opt.44(32), 6861–6868 (2005). [CrossRef] [PubMed]
  26. Moxtek, “Pixelated polarizers” (Moxtek, Inc, 2010), retrieved 22 Aug, 2012, http://www.moxtek.com/optics-products/pixelated-polarizers.html .
  27. M. P. Kothiyal and C. Delisle, “Shearing interferometer for phase shifting interferometry with polarization phase shifter,” Appl. Opt.24(24), 4439–4442 (1985). [CrossRef] [PubMed]
  28. K. Creath, “Phase-measurement interferometry techniques,” in Progress in Optics, E. Wolf, ed. (Elsevier Science, Amsterdam, 1988), pp. 349–393.
  29. D. W. Robinson, “Phase unwrapping methods,” in Interferogram Analysis, D. W. Robinson and G. T. Reid, eds. (IOP, Bristol, 1993), pp. 194–229.
  30. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software (Wiley-Interscience, New York, 1998).
  31. W.-J. Hwang, S. C. Cheng, and C.-J. Cheng, “Efficient phase unwrapping architecture for digital holographic microscopy,” Sensors (Basel)11(10), 9160–9181 (2011). [CrossRef] [PubMed]
  32. M. Born and E. Wolf, Optics, 7th ed. (Cambridge University Press, Cambridge, 1999).
  33. “Step height standards (quartz)” (VLSI Standards, Inc, 2011), retrieved 22 Aug, 2012, http://vlsistandards.com/products/dimensional/step.asp?SID=100 .
  34. K. Creath and J. C. Wyant, “Absolute measurement of surface roughness,” Appl. Opt.29(26), 3823–3827 (1990). [CrossRef] [PubMed]
  35. M. Mantravadi and D. Malacara, “Newton, Fizeau, and Haidinger interferometers,” in Optical Shop Testing; 3rd ed., D. Malacara, ed. (Wiley-Interscience, Hoboken, N.J., 2007), pp. 1–45.
  36. H. Kekre, S. Thepade, P. Mikherkee, M. Kakaiya, S. Wadhwa, and S. Singh, “Image retrieval with shape features extracted using gradient operators and slope magnitude technique with BTC,” Int. J. Comput. Appl.6, 28–33 (2010).
  37. “Pond life identification kit” (Microscopy-UK, 2012), retrieved 22 Aug, 2012, http://www.microscopy-uk.org.uk/index.html?http://www.microscopy-uk.org.uk/pond/protozoa.html .
  38. A. Khmaladze, R. L. Matz, J. Jasensky, E. Seeley, M. M. B. Holl, and Z. Chen, “Dual-wavelength digital holographic imaging with phase background subtraction,” Opt. Eng.51(5), 055801–055808 (2012). [CrossRef]
  39. P. G. Walker, G. B. Cranney, M. B. Scheidegger, G. Waseleski, G. M. Pohost, and A. P. Yoganathan, “Semiautomated method for noise reduction and background phase error correction in MR phase velocity data,” J. Magn. Reson. Imaging3(3), 521–530 (1993). [CrossRef] [PubMed]
  40. C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc.57(11), 1363–1367 (2003). [CrossRef] [PubMed]
  41. J. C. Wyant and K. Creath, “Basic wavefront aberration theory for optical metrology,” in Applied Optics and Optical Engineering, Volume XI, R. R. Shannon and J. C. Wyant, eds. (Academic, San Diego, 1992), pp. 1–53.
  42. J. S. Weszka, “A survey of threshold selection techniques,” Comput. Graphics Image Processing7(2), 259–265 (1978). [CrossRef]
  43. S. D. Yanowitz and A. M. Bruckstein, “A new method for image segmentation,” Comput. Vis. Graph. Image Process.46(1), 82–95 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (734 KB)     
» Media 2: MOV (2470 KB)     
» Media 3: MOV (1897 KB)     
» Media 4: MOV (879 KB)     
» Media 5: MOV (2390 KB)     
» Media 6: MOV (3176 KB)     
» Media 7: MOV (1590 KB)     
» Media 8: MOV (1559 KB)     
» Media 9: MOV (415 KB)     
» Media 10: MOV (3767 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited