OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 11 — Nov. 1, 2012
  • pp: 2881–2895

In vivo photothermal optical coherence tomography of gold nanorod contrast agents

J. M. Tucker-Schwartz, T. A. Meyer, C. A. Patil, C. L. Duvall, and M. C. Skala  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 11, pp. 2881-2895 (2012)
http://dx.doi.org/10.1364/BOE.3.002881


View Full Text Article

Enhanced HTML    Acrobat PDF (5881 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photothermal optical coherence tomography (PT-OCT) is a potentially powerful tool for molecular imaging. Here, we characterize PT-OCT imaging of gold nanorod (GNR) contrast agents in phantoms, and we apply these techniques for in vivo GNR imaging. The PT-OCT signal was compared to the bio-heat equation in phantoms, and in vivo PT-OCT images were acquired from subcutaneous 400 pM GNR Matrigel injections into mice. Experiments revealed that PT-OCT signals varied as predicted by the bio-heat equation, with significant PT-OCT signal increases at 7.5 pM GNR compared to a scattering control (p < 0.01) while imaging in common path configuration. In vivo PT-OCT images demonstrated an appreciable increase in signal in the presence of GNRs compared to controls. Additionally, in vivo PT-OCT GNR signals were spatially distinct from blood vessels imaged with Doppler OCT. We anticipate that the demonstrated in vivo PT-OCT sensitivity to GNR contrast agents is sufficient to image molecular expression in vivo. Therefore, this work demonstrates the translation of PT-OCT to in vivo imaging and represents the next step towards its use as an in vivo molecular imaging tool.

© 2012 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(350.5340) Other areas of optics : Photothermal effects
(160.4236) Materials : Nanomaterials

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: September 5, 2012
Revised Manuscript: October 12, 2012
Manuscript Accepted: October 15, 2012
Published: October 17, 2012

Citation
J. M. Tucker-Schwartz, T. A. Meyer, C. A. Patil, C. L. Duvall, and M. C. Skala, "In vivo photothermal optical coherence tomography of gold nanorod contrast agents," Biomed. Opt. Express 3, 2881-2895 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-11-2881


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. World Health Organization, Global Status Report on Noncommunicable Diseases 2010 (World Health Organization, Geneva, Switzerland, 2011), p. ix.
  2. A. Marusyk, V. Almendro, and K. Polyak, “Intra-tumour heterogeneity: a looking glass for cancer?” Nat. Rev. Cancer12(5), 323–334 (2012). [CrossRef] [PubMed]
  3. R. John, R. Rezaeipoor, S. G. Adie, E. J. Chaney, A. L. Oldenburg, M. Marjanovic, J. P. Haldar, B. P. Sutton, and S. A. Boppart, “In vivo magnetomotive optical molecular imaging using targeted magnetic nanoprobes,” Proc. Natl. Acad. Sci. U.S.A.107(18), 8085–8090 (2010). [CrossRef] [PubMed]
  4. A. L. Oldenburg, V. Crecea, S. A. Rinne, and S. A. Boppart, “Phase-resolved magnetomotive OCT for imaging nanomolar concentrations of magnetic nanoparticles in tissues,” Opt. Express16(15), 11525–11539 (2008). [PubMed]
  5. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography,” Opt. Lett.30(9), 1015–1017 (2005). [CrossRef] [PubMed]
  6. R. N. Graf, F. E. Robles, X. X. Chen, and A. Wax, “Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations,” J. Biomed. Opt.14(6), 064030 (2009). [CrossRef] [PubMed]
  7. A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, and S. A. Boppart, “Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography,” J. Mater. Chem.19(35), 6407–6411 (2009). [CrossRef] [PubMed]
  8. K. D. Rao, M. A. Choma, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Molecular contrast in optical coherence tomography by use of a pump-probe technique,” Opt. Lett.28(5), 340–342 (2003). [CrossRef] [PubMed]
  9. D. Jacob, R. L. Shelton, and B. E. Applegate, “Fourier domain pump-probe optical coherence tomography imaging of melanin,” Opt. Express18(12), 12399–12410 (2010). [CrossRef] [PubMed]
  10. M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett.8(10), 3461–3467 (2008). [CrossRef] [PubMed]
  11. D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express16(7), 4376–4393 (2008). [CrossRef] [PubMed]
  12. C. Zhou, T. H. Tsai, D. C. Adler, H. C. Lee, D. W. Cohen, A. Mondelblatt, Y. Wang, J. L. Connolly, and J. G. Fujimoto, “Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells,” Opt. Lett.35(5), 700–702 (2010). [CrossRef] [PubMed]
  13. A. S. Paranjape, R. Kuranov, S. Baranov, L. L. Ma, J. W. Villard, T. Wang, K. V. Sokolov, M. D. Feldman, K. P. Johnston, and T. E. Milner, “Depth resolved photothermal OCT detection of macrophages in tissue using nanorose,” Biomed. Opt. Express1(1), 2–16 (2010). [CrossRef] [PubMed]
  14. Y. Jung, R. Reif, Y. Zeng, and R. K. Wang, “Three-dimensional high-resolution imaging of gold nanorods uptake in sentinel lymph nodes,” Nano Lett.11(7), 2938–2943 (2011). [CrossRef] [PubMed]
  15. R. V. Kuranov, S. Kazmi, A. B. McElroy, J. W. Kiel, A. K. Dunn, T. E. Milner, and T. Q. Duong, “In vivo depth-resolved oxygen saturation by dual-wavelength photothermal (DWP) OCT,” Opt. Express19(24), 23831–23844 (2011). [CrossRef] [PubMed]
  16. R. V. Kuranov, J. Qiu, A. B. McElroy, A. Estrada, A. Salvaggio, J. Kiel, A. K. Dunn, T. Q. Duong, and T. E. Milner, “Depth-resolved blood oxygen saturation measurement by dual-wavelength photothermal (DWP) optical coherence tomography,” Biomed. Opt. Express2(3), 491–504 (2011). [CrossRef] [PubMed]
  17. G. Y. Guan, R. Reif, Z. H. Huang, and R. K. K. Wang, “Depth profiling of photothermal compound concentrations using phase sensitive optical coherence tomography,” J. Biomed. Opt.16(12), 126003 (2011). [CrossRef] [PubMed]
  18. J. M. Tucker-Schwartz, T. Hong, D. C. Colvin, Y. Xu, and M. C. Skala, “Dual-modality photothermal optical coherence tomography and magnetic-resonance imaging of carbon nanotubes,” Opt. Lett.37(5), 872–874 (2012). [CrossRef] [PubMed]
  19. H. M. Subhash, H. Xie, J. W. Smith, and O. J. McCarty, “Optical detection of indocyanine green encapsulated biocompatible poly (lactic-co-glycolic) acid nanoparticles with photothermal optical coherence tomography,” Opt. Lett.37(5), 981–983 (2012). [CrossRef] [PubMed]
  20. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science297(5584), 1160–1163 (2002). [CrossRef] [PubMed]
  21. J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett.5(3), 473–477 (2005). [CrossRef] [PubMed]
  22. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett.5(4), 709–711 (2005). [CrossRef] [PubMed]
  23. L. Tong, Q. Wei, A. Wei, and J. X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol.85(1), 21–32 (2009). [CrossRef] [PubMed]
  24. S. Barbosa, A. Agrawal, L. Rodríguez-Lorenzo, I. Pastoriza-Santos, R. A. Alvarez-Puebla, A. Kornowski, H. Weller, and L. M. Liz-Marzán, “Tuning size and sensing properties in colloidal gold nanostars,” Langmuir26(18), 14943–14950 (2010). [CrossRef] [PubMed]
  25. J. Kim, J. Oh, and T. E. Milner, “Measurement of optical path length change following pulsed laser irradiation using differential phase optical coherence tomography,” J. Biomed. Opt.11(4), 041122 (2006). [CrossRef] [PubMed]
  26. X. H. Huang, S. Neretina, and M. A. El-Sayed, “Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009). [CrossRef]
  27. G. von Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas,” Cancer Res.69(9), 3892–3900 (2009). [CrossRef] [PubMed]
  28. J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications,” J. Phys. Chem. C113(28), 12090–12094 (2009). [CrossRef]
  29. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006). [CrossRef] [PubMed]
  30. C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. X. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: synthesis, assembly, and optical applications,” J. Phys. Chem. B109(29), 13857–13870 (2005). [CrossRef] [PubMed]
  31. H. W. Liao and J. H. Hafner, “Gold nanorod bioconjugates,” Chem. Mater.17(18), 4636–4641 (2005). [CrossRef]
  32. C. J. Orendorff and C. J. Murphy, “Quantitation of metal content in the silver-assisted growth of gold nanorods,” J. Phys. Chem. B110(9), 3990–3994 (2006). [CrossRef] [PubMed]
  33. R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt.15(5), 056005 (2010). [CrossRef] [PubMed]
  34. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004). [CrossRef] [PubMed]
  35. S. Moon, S. W. Lee, and Z. P. Chen, “Reference spectrum extraction and fixed-pattern noise removal in optical coherence tomography,” Opt. Express18(24), 24395–24404 (2010). [CrossRef] [PubMed]
  36. L. R. Rabiner, R. W. Schafer, and C. M. Rader, “Chirp Z-transform algorithm,” IEEE Trans. Acoust. SpeechAu17, 86–92 (1969).
  37. R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express17(11), 8926–8940 (2009). [CrossRef] [PubMed]
  38. P. D. Welch, “Use of fast Fourier transform for estimation of power spectra—a method based on time averaging over short modified periodograms,” IEEE Trans. Acoust. SpeechAu15, 70–73 (1967).
  39. A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, 2nd ed. (Prentice Hall, Upper Saddle River, N.J., 1999), p. xxvi.
  40. M. J. C. van Gemert, G. W. Lucassen, and A. J. Welch, “Time constants in thermal laser medicine: II. Distributions of time constants and thermal relaxation of tissue,” Phys. Med. Biol.41(8), 1381–1399 (1996). [CrossRef] [PubMed]
  41. M. A. Choma, A. K. Ellerbee, C. H. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett.30(10), 1162–1164 (2005). [CrossRef] [PubMed]
  42. A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt.11(4), 041121 (2006). [CrossRef] [PubMed]
  43. B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express13(14), 5483–5493 (2005). [CrossRef] [PubMed]
  44. N. Krstajić, C. T. A. Brown, K. Dholakia, and M. E. Giardini, “Tissue surface as the reference arm in Fourier domain optical coherence tomography,” J. Biomed. Opt.17(7), 071305 (2012). [CrossRef] [PubMed]
  45. V. X. D. Yang, M. L. Gordon, A. Mok, Y. H. Zhao, Z. P. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun.208(4-6), 209–214 (2002). [CrossRef]
  46. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express14(17), 7821–7840 (2006). [CrossRef] [PubMed]
  47. D. L. G. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes, “Medical image registration,” Phys. Med. Biol.46(3), R1–R45 (2001). [CrossRef] [PubMed]
  48. T. Jetzfellner, A. Rosenthal, A. Buehler, K. H. Englmeier, D. Razansky, and V. Ntziachristos, “Multispectral optoacoustic tomography by means of normalized spectral ratio,” Opt. Lett.36(21), 4176–4178 (2011). [CrossRef] [PubMed]
  49. C. Pache, N. L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. I. Gibson, C. Santschi, and T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in optical coherence microscopy,” Opt. Express20(19), 21385–21399 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited