OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 11 — Nov. 1, 2012
  • pp: 2964–2975

Standoff detection of biological agents using laser induced fluorescence—a comparison of 294 nm and 355 nm excitation wavelengths

Øystein Farsund, Gunnar Rustad, and Gunnar Skogan  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 11, pp. 2964-2975 (2012)
http://dx.doi.org/10.1364/BOE.3.002964


View Full Text Article

Enhanced HTML    Acrobat PDF (1190 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Standoff detection measuring the fluorescence spectra of seven different biological agents excited by 294 nm as well as 355 nm wavelength laser pulses has been undertaken. The biological warfare agent simulants were released in a semi-closed aerosol chamber at 210 m standoff distance and excited by light at either of the two wavelengths using the same instrument. Significant differences in several of the agents’ fluorescence response were seen at the two wavelengths. The anthrax simulants’ fluorescence responses were almost an order of magnitude stronger at the shorter wavelength excitation. However, most importantly, the fluorescence spectra were significantly more dissimilar at 294 nm than at 355 nm excitation with ~7 nm spectral resolution. This indicates that classification of the substances should be possible with a lower error rate for standoff detection using 294 nm rather than 355 nm excitation wavelength, or even better, utilizing both.

© 2012 OSA

OCIS Codes
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(280.1100) Remote sensing and sensors : Aerosol detection
(280.3640) Remote sensing and sensors : Lidar
(300.2530) Spectroscopy : Fluorescence, laser-induced
(280.1415) Remote sensing and sensors : Biological sensing and sensors

ToC Category:
Biodefense and Bioterrorism

History
Original Manuscript: August 30, 2012
Revised Manuscript: October 15, 2012
Manuscript Accepted: October 16, 2012
Published: October 24, 2012

Citation
Øystein Farsund, Gunnar Rustad, and Gunnar Skogan, "Standoff detection of biological agents using laser induced fluorescence—a comparison of 294 nm and 355 nm excitation wavelengths," Biomed. Opt. Express 3, 2964-2975 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-11-2964


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. D. Mayor, P. Benda, C. E. Murata, and R. J. Danzig, “Lidars: a key component of urban biodefense,” Biosecur. Bioterror.6(1), 45–56 (2008). [CrossRef] [PubMed]
  2. J. Ho, “Future of biological aerosol detection,” Anal. Chim. Acta457(1), 125–148 (2002). [CrossRef]
  3. “Laser Based Stand-Off Detection of Biological Agents. Final Report of Task Group SET-098/RTG-55,” RTO-TR-SET-098 AC/323(SET-098)TP/265 (2010). http://www.cso.nato.int/Pubs/rdp.asp?RDP=RTO-TR-SET-098
  4. R. Nyhavn, H. J. F. Moen, Ø. Farsund, and G. Rustad, “Optimal classification of standoff bioaerosol measurements using evolutionary algorithms,” Proc. SPIE8018, 801806, 801806-13 (2011). [CrossRef]
  5. K. Baxter, M. Castle, S. Barrington, P. Withers, V. Foot, A. Pickering, and N. Felton, “UK small scale UVLIF lidar for standoff BW detection,” Proc. SPIE6739, 67390Z, 67390Z-10 (2007). [CrossRef]
  6. T. Vo-Dinh, Biomedical Photonics Handbook (CRC Press, Boca Raton, FL, 2003).
  7. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, New York, 1999).
  8. G. W. Faris, R. A. Copeland, K. Mortelmans, and B. V. Bronk, “Spectrally resolved absolute fluorescence cross sections for bacillus spores,” Appl. Opt.36(4), 958–967 (1997). [CrossRef] [PubMed]
  9. Y. L. Pan, J. D. Eversole, P. H. Kaye, V. Foot, R. G. Pinnick, S. C. Hill, M. W. Mayo, J. R. Bottiger, A. L. Huston, V. Sivaprakasam, and R. K. Chang, “Bio-aerosol fluorescence,” in Optics of Biological Particles, NATO science series, Vol. 238 of Series II, Mathematics, Physics and Chemistry, A. Hoekstra, V. Maltsev, and G. Videen, eds. (Springer, Dordrecht, 2007), pp 63–164.
  10. P. Jonsson, F. Kullander, C. Vahlberg, P. Jelger, M. Tiihonen, P. Wasterby, T. Tjarnhage, and M. Lindgren, “Spectral detection of ultraviolet laser induced fluorescence from individual bioaerosol particles,” Proc. SPIE6398, 63980F, 63980F-12 (2006). [CrossRef]
  11. Ø. Farsund, G. Rustad, I. Kåsen, and T. V. Haavardsholm, “Required Spectral Resolution for Bioaerosol Detection Algorithms Using Standoff Laser-Induced Fluorescence Measurements,” IEEE Sens. J.10(3), 655–661 (2010). [CrossRef]
  12. P. Jonsson, M. Elmqvist, O. Gustafsson, F. Kullander, R. Persson, G. Olofsson, T. Tjarnhage, O. Farsund, T. V. Haavardsholm, and G. Rustad, “Evaluation of biological aerosol stand-off detection at a field trial,” Proc. SPIE7484, 748400I (2009).
  13. O. Farsund and G. Rustad, “Sum-Frequency Generation of High-Energy and High-Beam-Quality Ultraviolet Pulses,” Int. J. Opt.2011, 737684 (2011). [CrossRef]
  14. G. G. Guilbault, Practical Fluorescence (M. Dekker, New York, 1990).
  15. R. M. Measures, Laser Remote Sensing—Fundamentals and Applications (Krieger, Malabar, FL, 1992).
  16. J. R. Simard, G. Roy, P. Mathieu, V. Larochelle, J. McFee, and J. Ho, “Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence,” IEEE Trans. Geosci. Rem. Sens.42(4), 865–874 (2004). [CrossRef]
  17. S. C. Hill, R. G. Pinnick, S. Niles, Y.-L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C.-S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol.3(4-5), 221–239 (1999). [CrossRef]
  18. C. Laflamme, J. R. Simard, S. Buteau, P. Lahaie, D. Nadeau, B. Déry, O. Houle, P. Mathieu, G. Roy, J. Ho, and C. Duchaine, “Effect of growth media and washing on the spectral signatures of aerosolized biological simulants,” Appl. Opt.50(6), 788–796 (2011). [CrossRef] [PubMed]
  19. M. Jerrett, R. T. Burnett, C. A. Pope, K. Ito, G. Thurston, D. Krewski, Y. L. Shi, E. Calle, and M. Thun, “Long-term ozone exposure and mortality,” N. Engl. J. Med.360(11), 1085–1095 (2009). [CrossRef] [PubMed]
  20. D. B. Wetlaufer, Ultraviolet Spectra of Proteins and Amino Acids, Vol. 17 of Advances in Protein Chemistry (Academic, 1962), pp. 303–390.
  21. MODTRAN, Air Force Research Labs, Hanscom AFB, MA, 2008.
  22. Ø. Farsund, G. Arisholm, and G. Rustad, “Improved beam quality from a high energy optical parametric oscillator using crystals with orthogonal critical planes,” Opt. Express18(9), 9229–9235 (2010). [CrossRef] [PubMed]
  23. S. Buteau, J.-R. Simard, and S. Rowsell, “Bioaerosols standoff detection simultaneously refereed with particle concentration (ppl) and viability units (ACPLA),” Proc. SPIE7484, 748408, 748408-12 (2009). [CrossRef]
  24. A. Furiga, G. Pierre, M. Glories, P. Aimar, C. Roques, C. Causserand, and M. Berge, “Effects of ionic strength on bacteriophage MS2 behavior and their implications for the assessment of virus retention by ultrafiltration membranes,” Appl. Environ. Microbiol.77(1), 229–236 (2011). [CrossRef] [PubMed]
  25. International Standardisation Organisation, “Water Quality—Detection and Enumeration of Bacteriophages—Part 1: Enumeration of F-Specific RNA Bacteriophages,” EN ISO 10705–1 (International Standardisation Organisation, Geneva, Switzerland, 1995).
  26. V. Sivaprakasam, H. B. Lin, A. L. Huston, and J. D. Eversole, “Spectral characterization of biological aerosol particles using two-wavelength excited laser-induced fluorescence and elastic scattering measurements,” Opt. Express19(7), 6191–6208 (2011). [CrossRef] [PubMed]
  27. V. Sivaprakasam, A. Huston, C. Scotto, and J. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt. Express12(19), 4457–4466 (2004). [CrossRef] [PubMed]
  28. C. Laflamme, J.-R. Simard, S. Buteau, P. Lahaie, D. Nadeau, B. Déry, O. Houle, P. Mathieu, G. Roy, J. Ho, and C. Duchaine, “Effect of growth media and washing on the spectral signatures of aerosolized biological simulants,” Appl. Opt.50(6), 788–796 (2011). [CrossRef] [PubMed]
  29. Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: comparison of classification schemes employing different emission and scattering results,” Opt. Express18(12), 12436–12457 (2010). [CrossRef] [PubMed]
  30. H. C. Huang, Y. L. Pan, S. C. Hill, R. G. Pinnick, and R. K. Chang, “Real-time measurement of dual-wavelength laser-induced fluorescence spectra of individual aerosol particles,” Opt. Express16(21), 16523–16528 (2008). [CrossRef] [PubMed]
  31. M. Seaver, D. C. Roselle, J. F. Pinto, and J. D. Eversole, “Absolute emission spectra from Bacillus subtilis and Escherichia coli vegetative cells in solution,” Appl. Opt.37(22), 5344–5347 (1998). [CrossRef] [PubMed]
  32. T. V. Haavardsholm, Ø. Farsund, and G. Rustad, “Biological aerosol standoff detection and agent discrimination based on experimental UV laser induced fluorescence data,” presented at 2008 Algorithm Workshop, DTRA and JSTO (Baltimore, MD, Nov. 4–6, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited