OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 11 — Nov. 1, 2012
  • pp: 3001–3011

Radiance detection of non-scattering inclusions in turbid media

Serge Grabtchak, Tyler J. Palmer, I. Alex Vitkin, and William M. Whelan  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 11, pp. 3001-3011 (2012)
http://dx.doi.org/10.1364/BOE.3.003001


View Full Text Article

Enhanced HTML    Acrobat PDF (8433 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Detection of non-scattering domains (voids) is an area of active research in biomedical optics. To avoid complexities of image reconstruction algorithms and requirements of a priori knowledge of void locations inherent to diffuse optical tomography (DOT), it would be useful to establish specific experimental signatures of voids that would help identify and detect them by other means. To address this, we present a radiance-based spectro-angular mapping approach that identifies void locations in the angular domain and establishes their spectral features. Using water-filled capillaries in scattering Intralipid as a test platform, we demonstrate perturbations in the directional photon density distribution produced by individual voids.

© 2012 OSA

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.7050) Medical optics and biotechnology : Turbid media
(290.4210) Scattering : Multiple scattering

ToC Category:
Optics of Tissue and Turbid Media

History
Original Manuscript: August 13, 2012
Revised Manuscript: October 24, 2012
Manuscript Accepted: October 25, 2012
Published: October 26, 2012

Citation
Serge Grabtchak, Tyler J. Palmer, I. Alex Vitkin, and William M. Whelan, "Radiance detection of non-scattering inclusions in turbid media," Biomed. Opt. Express 3, 3001-3011 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-11-3001


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol.41(4), 767–783 (1996). [CrossRef] [PubMed]
  2. H. Dehghani, D. T. Delpy, and S. R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol.44(12), 2897–2906 (1999). [CrossRef] [PubMed]
  3. H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A17(9), 1659–1670 (2000). [CrossRef] [PubMed]
  4. J. Ripoll, M. Nieto-Vesperinas, S. R. Arridge, and H. Dehghani, “Boundary conditions for light propagation in diffusive media with nonscattering regions,” J. Opt. Soc. Am. A17(9), 1671–1681 (2000). [CrossRef] [PubMed]
  5. M. Ono, Y. Kashio, M. Schweiger, H. Dehghanim, S. R. Arridge, M. Firbank, and E. Okada, “Topographic distribution of photon measurement density functions on the brain surface by hybrid radiosity-diffusion method,” Opt. Rev.7(5), 426–431 (2000). [CrossRef]
  6. J. Riley, H. Dehghani, M. Schweiger, S. R. Arridge, J. Ripoll, and M. Nieto-Vesperinas, “3D optical tomography in the presence of void regions,” Opt. Express7(13), 462–467 (2000). [CrossRef] [PubMed]
  7. N. Hyvönen, “Locating transparent regions in optical absorption and scattering tomography,” SIAM J. Appl. Math.67(4), 1101–1123 (2007). [CrossRef]
  8. S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl.25(12), 123010 (2009). [CrossRef]
  9. S. Grabtchak, T. J. Palmer, and W. M. Whelan, “Detection of localized inclusions of gold nanoparticles in Intralipid-1% by point-radiance spectroscopy,” J. Biomed. Opt.16(7), 077003 (2011). [CrossRef] [PubMed]
  10. S. Grabtchak, T. J. Palmer, F. Foschum, A. Liemert, A. Kienle, and W. M. Whelan, “Experimental spectro-angular mapping of light distribution in turbid media,” J. Biomed. Opt.17(6), 067007 (2012). [CrossRef] [PubMed]
  11. S. C. Feng, F. A. Zeng, and B. Chance, “Photon migration in the presence of a single defect: a perturbation analysis,” Appl. Opt.34(19), 3826–3837 (1995). [CrossRef] [PubMed]
  12. S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, H. Schomberg, J. C. Paasschens, J. B. Melissen, and N. A. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt.36(1), 180–213 (1997). [CrossRef] [PubMed]
  13. S. R. Arridge, “Photon-measurement density functions. Part I: analytical forms,” Appl. Opt.34(31), 7395–7409 (1995). [CrossRef] [PubMed]
  14. A. Zourabian, A. Siegel, B. Chance, N. Ramanujam, M. Rode, and D. A. Boas, “Trans-abdominal monitoring of fetal arterial blood oxygenation using pulse oximetry,” J. Biomed. Opt.5(4), 391–405 (2000). [CrossRef] [PubMed]
  15. S. Fantini, M. A. Franceschini, S. A. Walker, J. S. Maier, and E. Gratton, “Photon path distributions in turbid media: Applications for imaging,” Proc. SPIE2389, 340–349 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited