OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 11 — Nov. 1, 2012
  • pp: 3012–3021

Noninvasive glucose detection in human skin using wavelength modulated differential laser photothermal radiometry

Xinxin Guo, Andreas Mandelis, and Bernard Zinman  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 11, pp. 3012-3021 (2012)
http://dx.doi.org/10.1364/BOE.3.003012


View Full Text Article

Enhanced HTML    Acrobat PDF (1112 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Noninvasive glucose monitoring will greatly improve diabetes management. We applied Wavelength-Modulated Differential Laser Photothermal Radiometry (WM-DPTR) to noninvasive glucose measurements in human skin in vitro in the mid-infrared range. Glucose measurements in human blood serum diffused into a human skin sample (1 mm thickness from abdomen) in the physiological range (21-400 mg/dl) demonstrated high sensitivity and accuracy to meet wide clinical detection requirements. It was found that the glucose sensitivity could be tuned by adjusting the intensity ratio and phase difference of the two laser beams in the WM-DPTR system. The measurement results demonstrated the feasibility of the development of WM-DPTR into a clinically viable noninvasive glucose biosensor.

© 2012 OSA

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(300.6430) Spectroscopy : Spectroscopy, photothermal
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Noninvasive Optical Diagnostics

History
Original Manuscript: July 26, 2012
Revised Manuscript: October 14, 2012
Manuscript Accepted: October 23, 2012
Published: October 29, 2012

Citation
Xinxin Guo, Andreas Mandelis, and Bernard Zinman, "Noninvasive glucose detection in human skin using wavelength modulated differential laser photothermal radiometry," Biomed. Opt. Express 3, 3012-3021 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-11-3012


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, and National Academy of Clinical Biochemistry, “Position statement executive summary: guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care34(6), 1419–1423 (2011). [CrossRef] [PubMed]
  2. D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, and National Academy of Clinical BiochemistryEvidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care34(6), e61–e99 (2011). [CrossRef] [PubMed]
  3. American Diabetes Association, “2012 Consumer guide: 2012 blood glucose meters,” Diabetes Forecast Mag., January, 2012.
  4. American Diabetes Association, “2012 Consumer guide: 2012 continuous glucose monitors,” Diabetes Forecast Mag., January, 2012.
  5. R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt.5(1), 5–16 (2000). [CrossRef] [PubMed]
  6. G. L. Coté, “Noninvasive and minimally-invasive optical monitoring technologies,” J. Nutr.131(5), 1596S–1604S (2001). [PubMed]
  7. A. Tura, A. Maran, and G. Pacini, “Non-invasive glucose monitoring: assessment of technologies and devices according to quantitative criteria,” Diabetes Res. Clin. Pract.77(1), 16–40 (2007). [CrossRef] [PubMed]
  8. V. V. Tuchin, ed., Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues (CRC Press, Boca Raton, FL, 2008).
  9. C. E. Ferrante do Amaral and B. Wolf, “Current development in non-invasive glucose monitoring,” Med. Eng. Phys.30(5), 541–549 (2008). [CrossRef] [PubMed]
  10. S. K. Vashist, “Non-invasive glucose monitoring technology in diabetes management: A review,” Anal. Chim. Acta750, 16–27 (2012). [CrossRef] [PubMed]
  11. N. A. Bazaev, Yu. P. Masloboev, and S. V. Selishchev, “Optical methods for noninvasive blood glucose monitoring,” Biomed. Eng. (N.Y.)45(6), 229–233 (2012). [CrossRef]
  12. C. Chou, C. Y. Han, W. C. Kuo, Y. C. Huang, C. M. Feng, and J. C. Shyu, “Noninvasive glucose monitoring in vivo with an optical heterodyne polarimeter,” Appl. Opt.37(16), 3553–3557 (1998). [CrossRef] [PubMed]
  13. B. H. Malik and G. L. Coté, “Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring,” J. Biomed. Opt.15(1), 017002 (2010). [CrossRef] [PubMed]
  14. I. Barman, C. R. Kong, G. P. Singh, R. R. Dasari, and M. S. Feld, “Accurate spectroscopic calibration for noninvasive glucose monitoring by modeling the physiological glucose dynamics,” Anal. Chem.82(14), 6104–6114 (2010). [CrossRef] [PubMed]
  15. J. L. Lambert, C. C. Pelletier, and M. Borchert, “Glucose determination in human aqueous humor with Raman spectroscopy,” J. Biomed. Opt.10(3), 031110 (2005). [CrossRef] [PubMed]
  16. R. Marbach, T. Koschinsky, F. A. Gries, and H. M. Heise, “Noninvasive blood glucose assay by near-infrared diffuse reflectance spectroscopy of the human inner lip,” Appl. Spectrosc.47(7), 875–881 (1993). [CrossRef]
  17. K. Maruo, M. Tsurugi, M. Tamura, and Y. Ozaki, “In vivo noninvasive measurement of blood glucose by near-infrared diffuse-reflectance spectroscopy,” Appl. Spectrosc.57(10), 1236–1244 (2003). [CrossRef] [PubMed]
  18. C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.)136(6), 1192–1198 (2011). [CrossRef] [PubMed]
  19. I. Gabriely, R. Wozniak, M. Mevorach, J. Kaplan, Y. Aharon, and H. Shamoon, “Transcutaneous glucose measurement using near-infrared spectroscopy during hypoglycemia,” Diabetes Care22(12), 2026–2032 (1999). [CrossRef] [PubMed]
  20. C. D. Malchoff, K. Shoukri, J. I. Landau, and J. M. Buchert, “A novel noninvasive blood glucose monitor,” Diabetes Care25(12), 2268–2275 (2002). [CrossRef] [PubMed]
  21. P. Zheng, C. E. Kramer, C. W. Barnes, J. R. Braig, and B. B. Sterling, “Noninvasive glucose determination by oscillating thermal gradient spectrometry,” Diabetes Technol. Ther.2(1), 17–25 (2000). [CrossRef] [PubMed]
  22. R. Ballerstadt, C. Evans, A. Gowda, and R. McNichols, “In vivo performance evaluation of a transdermal near- infrared fluorescence resonance energy transfer affinity sensor for continuous glucose monitoring,” Diabetes Technol. Ther.8(3), 296–311 (2006). [CrossRef] [PubMed]
  23. W. March, D. Lazzaro, and S. Rastogi, “Fluorescent measurement in the non-invasive contact lens glucose sensor,” Diabetes Technol. Ther.8(3), 312–317 (2006). [CrossRef] [PubMed]
  24. J. Kottmann, J. M. Rey, J. Luginbühl, E. Reichmann, and M. W. Sigrist, “Glucose sensing in human epidermis using mid-infrared photoacoustic detection,” Biomed. Opt. Express3(4), 667–680 (2012). [CrossRef] [PubMed]
  25. G. Spanner and R. NieBner, “New concept for the non-invasive determination of physiological glucose concentrations using modulated laser diodes,” Fresenius J. Anal. Chem.354, 327–328 (1996).
  26. G. B. Christison and H. A. MacKenzie, “Laser photoacoustic determination of physiological glucose concentrations in human whole blood,” Med. Biol. Eng. Comput.31(3), 284–290 (1993). [CrossRef] [PubMed]
  27. C. J. Pouchert, The Aldrich Library of Infrared Spectra (Aldrich Chemical Co., ed. 3, 1981).
  28. H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45(9), 1587–1595 (1999). [PubMed]
  29. W. B. Martin, S. Mirov, and R. Venugopalan, “Using two discrete frequencies within the middle infrared to quantitatively determine glucose in serum,” J. Biomed. Opt.7(4), 613–617 (2002). [CrossRef] [PubMed]
  30. W. B. Martin, S. Mirov, and R. Venugopalan, “Middle infrared, quantum cascade laser optoelectronic absorption system for monitoring glucose in serum,” Appl. Spectrosc.59(7), 881–884 (2005). [CrossRef] [PubMed]
  31. X. Guo, A. Mandelis, A. Matvienko, K. Sivagurunathan, and B. Zinman, “Wavelength-modulated differential laser photothermal radiometry for blood glucose measurements,” J. Phys.: Confer. Ser.214, 012025 (2010). [CrossRef]
  32. X. Guo, A. Mandelis, and B. Zinman, “Non-invasive glucose measurements using wavelength modulated differential photothermal radiometry (WM-DPTR),” Int. J. Thermophys., doi:. [CrossRef]
  33. A. Mandelis and X. Guo, “Method of performing wavelength modulated differential laser photothermal radiometry with high sensitivity,” U. S. patent application No. 20110118571 (Nov. 17, 2010).
  34. A. Mandelis and X. Guo, “Wavelength-modulated differential photothermal radiometry: theory and experimental applications to glucose detection in water,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(4), 041917 (2011). [CrossRef] [PubMed]
  35. X. Guo, A. Mandelis, and B. Zinman, “Applications of ultrasensitive wavelength-modulated differential photothermal radiometry to noninvasive glucose detection in blood serum,” J. Biophotonics, http://onlinelibrary.wiley.com/doi/10.1002/jbio.201200103/abstract .
  36. K. J. Wientjes and A. J. Schoonen, “Determination of time delay between blood and interstitial adipose tissue glucose concentration change by microdialysis in healthy volunteers,” Int. J. Artif. Organs24(12), 884–889 (2001). [PubMed]
  37. P. J. Stout, N. Peled, B. J. Erickson, M. E. Hilgers, J. R. Racchini, and T. B. Hoegh, “Comparison of glucose levels in dermal interstitial fluid and finger capillary blood,” Diabetes Technol. Ther.3(1), 81–90 (2001). [CrossRef] [PubMed]
  38. I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem.82(23), 9719–9726 (2010). [CrossRef] [PubMed]
  39. A. C. Guyton and J. E. Hall, Textbook of Medical Physiology (W.B. Saunders Co. Philadelphia, PA, 1996), pp 971–983.
  40. U. Werner, K. Giese, B. Sennhenn, K. Plamann, and K. Kölmel, “Measurement of the thermal diffusivity of human epidermis by studying thermal wave propagation,” Phys. Med. Biol.37(1), 21–35 (1992). [CrossRef] [PubMed]
  41. A. M. Stoll, Heat Transfer in Biotechnology, Vol 4 of Advances in Heat Transfer, J. P. Hartnett and T. Irvin, eds. (New York, Academic, 1967), p 117.
  42. Pranalytica Inc, Daylight Solutions, personal communication (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited