OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 11 — Nov. 1, 2012
  • pp: 3022–3032

4D shear stress maps of the developing heart using Doppler optical coherence tomography

Lindsy M. Peterson, Michael W. Jenkins, Shi Gu, Lee Barwick, Michiko Watanabe, and Andrew M. Rollins  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 11, pp. 3022-3032 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1677 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Accurate imaging and measurement of hemodynamic forces is vital for investigating how physical forces acting on the embryonic heart are transduced and influence developmental pathways. Of particular importance is blood flow-induced shear stress, which influences gene expression by endothelial cells and potentially leads to congenital heart defects through abnormal heart looping, septation, and valvulogenesis. However no imaging tool has been available to measure shear stress on the endocardium volumetrically and dynamically. Using 4D structural and Doppler OCT imaging, we are able to accurately measure the blood flow in the heart tube in vivo and to map endocardial shear stress throughout the heart cycle under physiological conditions for the first time. These measurements of the shear stress patterns will enable precise titration of experimental perturbations and accurate correlation of shear with the expression of molecules critical to heart development.

© 2012 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Optical Coherence Tomography

Original Manuscript: August 22, 2012
Revised Manuscript: October 11, 2012
Manuscript Accepted: October 15, 2012
Published: October 31, 2012

Lindsy M. Peterson, Michael W. Jenkins, Shi Gu, Lee Barwick, Michiko Watanabe, and Andrew M. Rollins, "4D shear stress maps of the developing heart using Doppler optical coherence tomography," Biomed. Opt. Express 3, 3022-3032 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. R. Hove, R. W. Köster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib, “Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis,” Nature421(6919), 172–177 (2003). [CrossRef] [PubMed]
  2. B. C. W. Groenendijk, B. P. Hierck, J. Vrolijk, M. Baiker, M. J. B. M. Pourquie, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Changes in shear stress-related gene expression after experimentally altered venous return in the chicken embryo,” Circ. Res.96(12), 1291–1298 (2005). [CrossRef] [PubMed]
  3. J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing blood flows act through klf2a to ensure normal valvulogenesis in the developing heart,” PLoS Biol.7(11), e1000246 (2009). [CrossRef] [PubMed]
  4. R. E. Poelmann, A. C. Gittenberger-de Groot, and B. P. Hierck, “The development of the heart and microcirculation: role of shear stress,” Med. Biol. Eng. Comput.46(5), 479–484 (2008). [CrossRef] [PubMed]
  5. N. Azuma, S. A. Duzgun, M. Ikeda, H. Kito, N. Akasaka, T. Sasajima, and B. E. Sumpio, “Endothelial cell response to different mechanical forces,” J. Vasc. Surg.32(4), 789–794 (2000). [CrossRef] [PubMed]
  6. R. J. Dekker, S. van Soest, R. D. Fontijn, S. Salamanca, P. G. de Groot, E. VanBavel, H. Pannekoek, and A. J. G. Horrevoets, “Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Krüppel-like factor (KLF2),” Blood100(5), 1689–1698 (2002). [CrossRef] [PubMed]
  7. K. Yashiro, H. Shiratori, and H. Hamada, “Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch,” Nature450(7167), 285–288 (2007). [CrossRef] [PubMed]
  8. B. Hogers, M. C. DeRuiter, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Extraembryonic venous obstructions lead to cardiovascular malformations and can be embryolethal,” Cardiovasc. Res.41(1), 87–99 (1999). [CrossRef] [PubMed]
  9. B. C. Groenendijk, K. Van der Heiden, B. P. Hierck, and R. E. Poelmann, “The role of shear stress on ET-1, KLF2, and NOS-3 expression in the developing cardiovascular system of chicken embryos in a venous ligation model,” Physiology (Bethesda)22(6), 380–389 (2007). [CrossRef] [PubMed]
  10. B. P. Hierck, K. Van der Heiden, C. Poelma, J. Westerweel, and R. E. Poelmann, “Fluid shear stress and inner curvature remodeling of the embryonic heart. Choosing the right lane!” ScientificWorldJournal8, 212–222 (2008). [CrossRef] [PubMed]
  11. M. Reckova, C. Rosengarten, A. deAlmeida, C. P. Stanley, A. Wessels, R. G. Gourdie, R. P. Thompson, and D. Sedmera, “Hemodynamics is a key epigenetic factor in development of the cardiac conduction system,” Circ. Res.93(1), 77–85 (2003). [CrossRef] [PubMed]
  12. M. L. A. Broekhuizen, B. Hogers, M. C. DeRuiter, R. E. Poelmann, A. C. Gittenberger-de Groot, and J. W. Wladimiroff, “Altered hemodynamics in chick embryos after extraembryonic venous obstruction,” Ultrasound Obstet. Gynecol.13(6), 437–445 (1999). [CrossRef] [PubMed]
  13. J. P. Huddleson, N. Ahmad, and J. B. Lingrel, “Up-regulation of the KLF2 transcription factor by fluid shear stress requires nucleolin,” J. Biol. Chem.281(22), 15121–15128 (2006). [CrossRef] [PubMed]
  14. G. B. Atkins and M. K. Jain, “Role of Krüppel-like transcription factors in endothelial biology,” Circ. Res.100(12), 1686–1695 (2007). [CrossRef] [PubMed]
  15. P. Basu, P. E. Morris, J. L. Haar, M. A. Wani, J. B. Lingrel, K. M. L. Gaensler, and J. A. Lloyd, “KLF2 is essential for primitive erythropoiesis and regulates the human and murine embryonic beta-like globin genes in vivo,” Blood106(7), 2566–2571 (2005). [CrossRef] [PubMed]
  16. C. K. L. Phoon, O. Aristizabal, and D. H. Turnbull, “40 MHz Doppler characterization of umbilical and dorsal aortic blood flow in the early mouse embryo,” Ultrasound Med. Biol.26(8), 1275–1283 (2000). [CrossRef] [PubMed]
  17. C. K. L. Phoon, O. Aristizábal, and D. H. Turnbull, “Spatial velocity profile in mouse embryonic aorta and Doppler-derived volumetric flow: a preliminary model,” Am. J. Physiol. Heart Circ. Physiol.283(3), H908–H916 (2002). [PubMed]
  18. P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, N. T. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech.39(7), 1191–1200 (2006). [CrossRef] [PubMed]
  19. C. Poelma, K. Van der Heiden, B. P. Hierck, R. E. Poelmann, and J. Westerweel, “Measurements of the wall shear stress distribution in the outflow tract of an embryonic chicken heart,” J. R. Soc. Interface7(42), 91–103 (2010). [CrossRef] [PubMed]
  20. M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier domain mode locked laser,” Opt. Express15(10), 6251–6267 (2007). [CrossRef] [PubMed]
  21. I. V. Larina, S. Ivers, S. Syed, M. E. Dickinson, and K. V. Larin, “Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT,” Opt. Lett.34(7), 986–988 (2009). [CrossRef] [PubMed]
  22. S. Rugonyi, C. Shaut, A. Liu, K. Thornburg, and R. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol.53(18), 5077–5091 (2008). [CrossRef] [PubMed]
  23. J. Ã. Männer, L. Thrane, K. Norozi, and T. M. Yelbuz, “In vivo imaging of the cyclic changes in cross-sectional shape of the ventricular segment of pulsating embryonic chick hearts at stages 14 to 17: a contribution to the understanding of the ontogenesis of cardiac pumping function,” Dev. Dyn.238(12), 3273–3284 (2009). [CrossRef] [PubMed]
  24. A. M. Davis, F. G. Rothenberg, N. Shepherd, and J. A. Izatt, “In vivo spectral domain optical coherence tomography volumetric imaging and spectral Doppler velocimetry of early stage embryonic chicken heart development,” J. Opt. Soc. Am. A25(12), 3134–3143 (2008). [CrossRef] [PubMed]
  25. A. Davis, J. Izatt, and F. Rothenberg, “Quantitative measurement of blood flow dynamics in embryonic vasculature using spectral Doppler velocimetry,” Anat. Rec. (Hoboken)292(3), 311–319 (2009). [CrossRef] [PubMed]
  26. M. Gargesha, M. W. Jenkins, D. L. Wilson, and A. M. Rollins, “High temporal resolution OCT using image-based retrospective gating,” Opt. Express17(13), 10786–10799 (2009). [CrossRef] [PubMed]
  27. P. Li, X. Yin, L. Shi, S. Rugonyi, and R. K. Wang, “In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography,” J. Biomed. Opt.17(9), 096006 (2012). [CrossRef]
  28. T. G. van Leeuwen, M. D. Kulkarni, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography,” Opt. Lett.24(22), 1584–1586 (1999). [CrossRef] [PubMed]
  29. A. Liu, R. K. Wang, K. L. Thornburg, and S. Rugonyi, “Dynamic variation of hemodynamic shear stress on the walls of developing chick hearts: computational models of the heart outflow tract,” Eng. Comput.25(1), 73–86 (2009). [CrossRef]
  30. A. Liu, A. Nickerson, A. Troyer, X. Yin, R. Cary, K. Thornburg, R. Wang, and S. Rugonyi, “Quantifying blood flow and wall shear stresses in the outflow tract of chick embryonic hearts,” Comput. Struc.89(11-12), 855–867 (2011). [CrossRef] [PubMed]
  31. M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt.15(6), 066022 (2010). [CrossRef] [PubMed]
  32. M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, O. Q. Chughtai, Y. Pan, L. M. Peterson, D. L. Wilson, M. Watanabe, J. G. Fujimoto, and A. M. Rollins, “An environmental chamber based OCT system for high-throughput longitudinal imaging of the embryonic heart,” presented at the SPIE BIOS Expo, San Jose, CA, Jan 19­24, 2008.
  33. C. M. Happel, L. Thrane, J. Thommes, J. Männer, and T. M. Yelbuz, ““Integration of an optical coherence tomography (OCT) system into an examination incubator to facilitate in vivo imaging of cardiovascular development in higher vertebrate embryos under stable physiological conditions” Annals of Anatomy -,” Anat. Anz.193(5), 425–435 (2011). [CrossRef]
  34. C. M. Happel, J. Thommes, L. Thrane, J. Männer, T. Ortmaier, B. Heimann, and T. M. Yelbuz, “Rotationally acquired four-dimensional optical coherence tomography of embryonic chick hearts using retrospective gating on the common central A-scan,” J. Biomed. Opt.16(9), 096007 (2011). [CrossRef] [PubMed]
  35. A. Liu, R. Wang, K. L. Thornburg, and S. Rugonyi, “Efficient postacquisition synchronization of 4-D nongated cardiac images obtained from optical coherence tomography: application to 4-D reconstruction of the chick embryonic heart,” J. Biomed. Opt.14(4), 044020 (2009). [CrossRef] [PubMed]
  36. B. E. Dunn, “Technique of shell-less culture of the 72-hour avian embryo,” Poult. Sci.53(1), 409–412 (1974). [CrossRef] [PubMed]
  37. M. Jenkins, M. Watanabe, and A. Rollins, “Longitudinal Imaging of Heart Development with Optical Coherence Tomography,” IEEE J. Sel. Top. Quantum Electron.18(3), 1166–1175 (2012). [CrossRef]
  38. R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: Two-dimensional phase unwrapping,” Radio Sci.23(4), 713–720 (1988). [CrossRef]
  39. M. Sato, I. Bitter, M. A. Bender, A. E. Kaufman, and M. Nakajima, “TEASAR: tree-structure extraction algorithm for accurate and robust skeletons,” in The Eighth Pacific Conference on Computer Graphics and Applications, 2000. Proceedings (2000), pp. 281–449.
  40. B. Garita, M. W. Jenkins, M. Han, C. Zhou, M. Vanauker, A. M. Rollins, M. Watanabe, J. G. Fujimoto, and K. K. Linask, “Blood flow dynamics of one cardiac cycle and relationship to mechanotransduction and trabeculation during heart looping,” Am. J. Physiol. Heart Circ. Physiol.300(3), H879–H891 (2011). [CrossRef] [PubMed]
  41. C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett.32(5), 506–508 (2007). [CrossRef] [PubMed]
  42. R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett.33(24), 2967–2969 (2008). [CrossRef] [PubMed]
  43. M. W. Jenkins, A. R. Duke, S. Gu, Y. Doughman, H. J. Chiel, H. Fujioka, M. Watanabe, E. D. Jansen, and A. M. Rollins, “Optical pacing of the embryonic heart,” Nat. Photonics4(9), 623–626 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (9650 KB)     

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited